diff --git a/hydromt_sfincs/sfincs.py b/hydromt_sfincs/sfincs.py index dafde8bf..e82c633f 100644 --- a/hydromt_sfincs/sfincs.py +++ b/hydromt_sfincs/sfincs.py @@ -619,8 +619,10 @@ def setup_subgrid( nbins: int = None, nr_subgrid_pixels: int = 20, nrmax: int = 2000, # blocksize - max_gradient: float = 5.0, + max_gradient: float = 99999.0, z_minimum: float = -99999.0, + huthresh: float = 0.01, + q_table_option: int = 2, manning_land: float = 0.04, manning_sea: float = 0.02, rgh_lev_land: float = 0.0, @@ -710,6 +712,12 @@ def setup_subgrid( to prevent numerical stability problems, by default 5.0 z_minimum : float, optional Minimum depth in the subgrid tables, by default -99999.0 + huthresh : float, optional + Threshold depth in SFINCS model, by default 0.01 m + q_table_option : int, optional + Option for the computation of the representative roughness and conveyance depth at u/v points, by default 2. + 1: "old" weighting method, compliant with SFINCS < v2.1.1, taking the avarage of the adjacent cells + 2: "improved" weighting method, recommended for SFINCS >= v2.1.1, that takes into account the wet fractions of the adjacent cells manning_land, manning_sea : float, optional Constant manning roughness values for land and sea, by default 0.04 and 0.02 s.m-1/3 Note that these values are only used when no Manning's n datasets are provided, @@ -753,6 +761,11 @@ def setup_subgrid( ) nlevels = nbins + if q_table_option == 1 and max_gradient > 20.0: + raise ValueError( + "For the old q_table_option, a max_gradient of 5.0 is recommended to improve numerical stability" + ) + if self.grid_type == "regular": self.reggrid.subgrid.build( da_mask=self.mask, @@ -765,6 +778,8 @@ def setup_subgrid( nrmax=nrmax, max_gradient=max_gradient, z_minimum=z_minimum, + huthresh=huthresh, + q_table_option=q_table_option, manning_land=manning_land, manning_sea=manning_sea, rgh_lev_land=rgh_lev_land, diff --git a/hydromt_sfincs/subgrid.py b/hydromt_sfincs/subgrid.py index 3fda9464..1a741864 100644 --- a/hydromt_sfincs/subgrid.py +++ b/hydromt_sfincs/subgrid.py @@ -371,9 +371,10 @@ def build( nlevels: int = 10, nr_subgrid_pixels: int = 20, nrmax: int = 2000, - max_gradient: float = 5.0, + max_gradient: float = 99999.0, z_minimum: float = -99999.0, huthresh: float = 0.01, + q_table_option: int = 2, manning_land: float = 0.04, manning_sea: float = 0.02, rgh_lev_land: float = 0.0, @@ -428,6 +429,10 @@ def build( Minimum depth in the subgrid tables, by default -99999.0 huthresh : float, optional Threshold depth in SFINCS model, by default 0.01 m + q_table_option : int, optional + Option for the computation of the representative roughness and conveyance depth at u/v points, by default 2. + 1: "old" weighting method, compliant with SFINCS < v2.1.0, taking the avarage of the adjecent cells + 2: "improved" weighting method, recommended for SFINCS >= v2.1.0, that takes into account the wet fractions of the adjacent cells manning_land, manning_sea : float, optional Constant manning roughness values for land and sea, by default 0.04 and 0.02 s.m-1/3 @@ -716,6 +721,7 @@ def build( yg, max_gradient, huthresh, + q_table_option, da_mask.raster.crs.is_geographic, ) @@ -797,6 +803,7 @@ def process_tile_regular( yg, max_gradient, huthresh, + q_table_option, is_geographic=False, ): """calculate subgrid properties for a single tile""" @@ -864,7 +871,7 @@ def process_tile_regular( manning = manning_grid[nn : nn + refi, mm : mm + refi] manning = np.transpose(manning) zmin, zmax, havg, nrep, pwet, ffit, navg, zz = subgrid_q_table( - zgu.flatten(), manning.flatten(), nlevels, huthresh + zgu.flatten(), manning.flatten(), nlevels, huthresh, q_table_option ) u_zmin[n, m] = zmin u_zmax[n, m] = zmax @@ -880,7 +887,7 @@ def process_tile_regular( zgu = zg[nn : nn + refi, mm : mm + refi] manning = manning_grid[nn : nn + refi, mm : mm + refi] zmin, zmax, havg, nrep, pwet, ffit, navg, zz = subgrid_q_table( - zgu.flatten(), manning.flatten(), nlevels, huthresh + zgu.flatten(), manning.flatten(), nlevels, huthresh, q_table_option ) v_zmin[n, m] = zmin v_zmax[n, m] = zmax @@ -952,7 +959,7 @@ def subgrid_v_table( zvolmin: float minimum elevation value to use for volume calculation (typically -20 m) max_gradient: float - maximum gradient to use for volume calculation (typically 0.1) + maximum gradient to use for volume calculation Return ------ @@ -1000,7 +1007,11 @@ def subgrid_v_table( @njit def subgrid_q_table( - elevation: np.ndarray, manning: np.ndarray, nlevels: int, huthresh: float + elevation: np.ndarray, + manning: np.ndarray, + nlevels: int, + huthresh: float, + option: int, ): """ map vector of elevation values into a hypsometric hydraulic radius - depth relationship for one u/v point @@ -1010,6 +1021,8 @@ def subgrid_q_table( manning : np.ndarray (nr of pixels in one cell) containing subgrid manning roughness values for one grid cell [s m^(-1/3)] nlevels : int, number of vertical levels [-] huthresh : float, threshold depth [m] + option : int, option to use "old" or "new" method for computing conveyance depth at u/v points + Returns ------- zmin : float, minimum elevation [m] @@ -1053,46 +1066,62 @@ def subgrid_q_table( # Determine level size (metres) dlevel = (zmax - zmin) / (nlevels - 1) - # Grid mean roughness - navg = np.mean(manning) + # Option can be either 1 ("old, compliant with SFINCS < v2.1.0") or 2 ("new", recommended SFINCS >= v2.1.0) + option = option # Loop through levels - for ilevel in range(nlevels): - # Top of level - zlevel = zmin + ilevel * dlevel - zz[ilevel] = zlevel - - # ibelow = np.where(elevation<=zlevel) # index of pixels below level level - h = np.maximum(zlevel - elevation, 0.0) # water depth in each pixel - iwet = np.where(zlevel - elevation > -1.0e-6)[0] # indices of wet pixels - hmean = np.mean(h) - havg[ilevel] = hmean # conveyance depth - pwet[ilevel] = len(iwet) / n # wet fraction + for ibin in range(nlevels): + # Top of bin + zbin = zmin + ibin * dlevel + zz[ibin] = zbin + + h = np.maximum(zbin - elevation, 0.0) # water depth in each pixel + + pwet[ibin] = (zbin - elevation > -1.0e-6).sum() / n # Side A h_a = np.maximum( - zlevel - dd_a, 0.0 + zbin - dd_a, 0.0 ) # Depth of all pixels (but set min pixel height to zbot). Can be negative, but not zero (because zmin = zbot + huthresh, so there must be pixels below zb). q_a = h_a ** (5.0 / 3.0) / manning_a # Determine 'flux' for each pixel - q_a = np.mean(q_a) # Wet-average flux through all the pixels + q_a = np.mean(q_a) # Grid-average flux through all the pixels + h_a = np.mean(h_a) # Grid-average depth through all the pixels # Side B h_b = np.maximum( - zlevel - dd_b, 0.0 + zbin - dd_b, 0.0 ) # Depth of all pixels (but set min pixel height to zbot). Can be negative, but not zero (because zmin = zbot + huthresh, so there must be pixels below zb). q_b = h_b ** (5.0 / 3.0) / manning_b # Determine 'flux' for each pixel - q_b = np.mean(q_b) # Wet-average flux through all the pixels - - q_ab = np.minimum(q_a, q_b) - - q_all = h ** (5.0 / 3.0) / manning # Determine 'flux' for each pixel - q_all = np.mean(q_all) # Wet-average flux through all the pixels - - # Weighted average of q_ab and q_all - w = (ilevel) / (nlevels - 1) - q = (1.0 - w) * q_ab + w * q_all - - nrep[ilevel] = hmean ** (5.0 / 3.0) / q # Representative n for qmean and hmean + q_b = np.mean(q_b) # Grid-average flux through all the pixels + h_b = np.mean(h_b) # Grid-average depth through all the pixels + + # Compute q and h + q_all = np.mean( + h ** (5.0 / 3.0) / manning + ) # Determine grid average 'flux' for each pixel + h_all = np.mean(h) # grid averaged depth of A and B combined + q_min = np.minimum(q_a, q_b) + h_min = np.minimum(h_a, h_b) + + if option == 1: + # Use old 1 option (weighted average of q_ab and q_all) option (min at bottom bin, mean at top bin) + w = (ibin) / ( + nlevels - 1 + ) # Weight (increase from 0 to 1 from bottom to top bin) + q = (1.0 - w) * q_min + w * q_all # Weighted average of q_min and q_all + hmean = h_all + + elif option == 2: + # Use newer 2 option (minimum of q_a an q_b, minimum of h_a and h_b increasing to h_all, using pwet for weighting) option + pwet_a = (zbin - dd_a > -1.0e-6).sum() / (n / 2) + pwet_b = (zbin - dd_b > -1.0e-6).sum() / (n / 2) + # Weight increases linearly from 0 to 1 from bottom to top bin use percentage wet in sides A and B + w = 2 * np.minimum(pwet_a, pwet_b) / (pwet_a + pwet_b) + q = (1.0 - w) * q_min + w * q_all # Weighted average of q_min and q_all + hmean = (1.0 - w) * h_min + w * h_all # Weighted average of h_min and h_all + + havg[ibin] = hmean # conveyance depth + nrep[ibin] = hmean ** (5.0 / 3.0) / q # Representative n for qmean and hmean nrep_top = nrep[-1] havg_top = havg[-1] @@ -1101,14 +1130,16 @@ def subgrid_q_table( # Determine nfit at zfit zfit = zmax + zmax - zmin - h = np.maximum(zfit - elevation, 0.0) # water depth in each pixel hfit = ( havg_top + zmax - zmin ) # mean water depth in cell as computed in SFINCS (assuming linear relation between water level and water depth above zmax) - q = h ** (5.0 / 3.0) / manning # unit discharge in each pixel - qmean = np.mean(q) # combined unit discharge for cell - nfit = hfit ** (5.0 / 3.0) / qmean + # Compute q and navg + h = np.maximum(zfit - elevation, 0.0) # water depth in each pixel + q = np.mean(h ** (5.0 / 3.0) / manning) # combined unit discharge for cell + navg = np.mean(manning) + + nfit = hfit ** (5.0 / 3.0) / q # Actually apply fit on gn2 (this is what is used in sfincs) gnavg2 = 9.81 * navg**2