-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
96 lines (76 loc) · 3.03 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import torch
import torch.nn.functional as F
import torch.optim as optim
import torch.nn as nn
import torchvision.transforms as T
import wandb
import time
import os
import numpy as np
import matplotlib.pyplot as plt
import random
from torchvision import datasets
from torch.utils.data import DataLoader
from einops import rearrange
from utils.data_augmentation import RandomMixup
from utils.data_loaders import get_data_loaders
from utils.train_and_evaluate import train_epoch, evaluate_epoch
from ViT_model import ViT
from ResNet import ResNet18
wandb.init(project="ImageNet1k-10")
config = wandb.config
torch.manual_seed(7)
LR = 1e-3
BATCH_SIZE = 16
N_EPOCHS = int(1e5) # inf :)
DROPOUT = 0.1
WEIGHT_DECAY = 0.01
IMAGE_SIZE = 256
PATCH_SIZE = 16
NUM_CLASSES = 10
IMAGES_PER_CLASS = 1300
VAL_IMAGES_PER_CLASS = 200
DATA_DIR = 'ImageNet1k-10'
# Load model
path_to_model_load = r''
load_model = False
config.lr = LR
config.batch_size = BATCH_SIZE
config.n_epochs = N_EPOCHS
config.dropout = DROPOUT
config.weight_decay = WEIGHT_DECAY
if __name__ == "__main__":
start_time = time.time()
if torch.cuda.is_available():
device = torch.device("cuda:0")
print('Running on the GPU')
else:
device = torch.device("cpu")
print('Running on the CPU')
train_loader, val_loader = get_data_loaders(DATA_DIR, NUM_CLASSES, IMAGES_PER_CLASS, VAL_IMAGES_PER_CLASS, BATCH_SIZE)
mixup = RandomMixup(num_classes=NUM_CLASSES)
model = ViT(image_size=IMAGE_SIZE, patch_size=PATCH_SIZE, num_classes=NUM_CLASSES, channels=3,
dim=128, depth=6, heads=16, mlp_dim=256, dropout=DROPOUT, stochastic_depth_prob=0).to(device)
#model = ResNet18(num_classes=NUM_CLASSES, dropout=DROPOUT).to(device)
wandb.watch(model)
# Load saved model
if os.path.exists(path_to_model_load) and load_model:
print('Loading model.')
model.load_state_dict(torch.load(path_to_model_load))
model.train()
loss_fun = nn.CrossEntropyLoss()
optimizer = optim.AdamW(model.parameters(), lr=LR, weight_decay=WEIGHT_DECAY)
max_acc_val = 85
for epoch in range(1, N_EPOCHS + 1):
print('Epoch:', epoch)
start_time_epoch = time.time()
loss_train = train_epoch(model, optimizer, train_loader, device, loss_fun, IMAGES_PER_CLASS, VAL_IMAGES_PER_CLASS, NUM_CLASSES, mixup)
loss_val, acc_val = evaluate_epoch(model, val_loader, device, loss_fun, VAL_IMAGES_PER_CLASS, NUM_CLASSES)
wandb.log({"loss train": loss_train, "loss val": loss_val, "acc val": acc_val, "Time for epoch": (time.time() - start_time_epoch)})
print('Execution time for Epoch:', '{:5.2f}'.format(time.time() - start_time_epoch), 'seconds')
if max_acc_val < acc_val:
max_acc_val = acc_val
print('Saving model')
path_to_model_save = r'Saved_models/accuracy_' + str(acc_val.item()) + ".pt"
torch.save(model.state_dict(), path_to_model_save)
print('Execution time:', '{:5.2f}'.format(time.time() - start_time), 'seconds\n')