-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathViT_model.py
137 lines (104 loc) · 4.3 KB
/
ViT_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import torch
import torch.nn.functional as F
import torch.optim as optim
import torch.nn as nn
import torchvision.transforms as T
import numpy as np
from einops import rearrange
class ViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, channels=3, dropout=0.1, stochastic_depth_prob=0.5):
super().__init__()
assert image_size % patch_size == 0, 'image size must be divisible by the patch size'
num_patches = (image_size // patch_size) ** 2
patch_dim = channels * patch_size ** 2
self.patch_size = patch_size
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
self.patch_to_embedding = nn.Linear(patch_dim, dim)
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.transformer = Transformer(dim, depth, heads, mlp_dim, dropout, stochastic_depth_prob)
self.to_cls_token = nn.Identity()
self.mlp_head = nn.Sequential(
nn.Linear(dim, mlp_dim),
# GELU is an activation function similar to RELU, but have been shown to improve the performance https://arxiv.org/pdf/1606.08415v4.pdf
nn.GELU(),
nn.Linear(mlp_dim, num_classes)
)
def forward(self, img, training = True):
p = self.patch_size
x = rearrange(img, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = p, p2 = p)
x = self.patch_to_embedding(x)
cls_tokens = self.cls_token.expand(img.shape[0], -1, -1)
# prepend the cls token to every image
x = torch.cat((cls_tokens, x), dim=1)
x += self.pos_embedding
x = self.transformer(x, training)
# Only uses the cls-token to classify the image
x = self.to_cls_token(x[:, 0])
x = torch.sigmoid(x)
return self.mlp_head(x)
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, mlp_dim, dropout, stochastic_depth_prob_rate_last):
super().__init__()
self.depth = depth
self.layers = nn.ModuleList([])
self.stochastic_depth_prob_rate_last = stochastic_depth_prob_rate_last
for _ in range(depth):
self.layers.append(nn.ModuleList([
Residual(PreNorm(dim, Attention(dim, heads = heads))),
Residual(PreNorm(dim, FeedForward(dim, mlp_dim, dropout)))
]))
def forward(self, x, training):
d = self.depth - 1
for layer_num, (attn, ff) in enumerate(self.layers):
# Stochastic depth probability implementation
if training:
prob_to_skip = self.stochastic_depth_prob_rate_last*layer_num/(self.depth-1)
rand_num = np.random.rand()
if rand_num < prob_to_skip:
return x
x = attn(x)
x = ff(x)
return x
class Attention(nn.Module):
def __init__(self, dim, heads=8):
super().__init__()
self.heads = heads
self.scale = dim ** -0.5
self.to_qkv = nn.Linear(dim, dim * 3, bias=False)
self.to_out = nn.Linear(dim, dim)
def forward(self, x):
b, n, _, h = *x.shape, self.heads
qkv = self.to_qkv(x)
q, k, v = rearrange(qkv, 'b n (qkv h d) -> qkv b h n d', qkv=3, h=h)
dots = torch.einsum('bhid,bhjd->bhij', q, k) * self.scale
attn = dots.softmax(dim=-1)
out = torch.einsum('bhij,bhjd->bhid', attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
out = self.to_out(out)
return out
class Residual(nn.Module):
def __init__(self, fn):
super().__init__()
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(x, **kwargs) + x
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout):
super().__init__()
self.l1 = nn.Linear(dim, hidden_dim)
self.l2 = nn.Linear(hidden_dim, dim)
self.dropout = dropout
def forward(self, x):
x = self.l1(x)
x = F.dropout(x, self.dropout)
x = F.gelu(x)
x = self.l2(x)
x = F.dropout(x, self.dropout)
return x