-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathiosolver.py
executable file
·161 lines (146 loc) · 5.76 KB
/
iosolver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#!/usr/bin/env python
from copy import deepcopy
from optparse import OptionParser
from math import sqrt
from operator import sub
from sys import exit
parser = OptionParser()
parser.add_option("-s","--start",
type="int", dest="start",
help="start of board solving range")
parser.add_option("-e","--end",
type="int", dest="end",
help="end of board solving range")
(options,args) = parser.parse_args()
if not ((options.start == 0 or options.start) and options.end):
print "Please input a start (-s) and end (-e) in the boardlist range."
exit(1)
def main():
boardlist = get_boardlist()
# global_min = [12335, [0, 1, 0, 1, 2, 3, 2, 3, 1, 4, 0, 4, 0, 3, 1, 2], (1, 3, 4, 4, 4)]
global_min = get_current_min()
# Solve the 100s
for i in range(options.start,options.end):
print "Board %s : %s" % (i, boardlist[i])
with open('log.txt', 'a') as f:
f.write("Board " + str(i) + ": " + str(boardlist[i]) + "\n")
candidate = solve(boardlist[i], [4,4,4,4,4])
if candidate and candidate[0] < global_min[0]:
global_min = candidate
print "GM: ", global_min
print
with open('log.txt', 'a') as f:
f.write("Global min: " + str(global_min) + "\n\n")
write_current_min(global_min)
def solve(board = [4,2,4,1,3,1,3,0,2,0,2,1,1,4,3,0],
distribution = [3,3,3,4,3]):
reset_globals(board, distribution)
solve_recursion(0)
print "Finished with %s calls and %s solutions." % (call_counter, sol_counter)
if distrib_solutions:
best_distribution = min(distrib_solutions, key=distrib_solutions.get)
best_solutions = distrib_solutions[best_distribution]
with open('log.txt', 'a') as f:
f.write("Min for this board is " + str(best_solutions))
f.write(" with distribution " + str(best_distribution) + "\n")
print "Min for this board is %s with distribution %s" % (best_solutions, best_distribution)
print distrib_solutions
return [best_solutions, deepcopy(board), best_distribution]
else:
with open('log.txt', 'a') as f:
f.write("No solutions were found for this board!\n")
print "No solutions were found for this board!"
return None
def solve_recursion(iteration):
global game_board, avail_space, themes, solution
global sol_counter, call_counter
call_counter += 1
# Case of success
if iteration == side_length * side_length:
distribution = determine_distribution(game_board)
if distribution in distrib_solutions:
distrib_solutions[distribution] += 1
else: distrib_solutions[distribution] = 1
sol_counter += 1
# Start solving
for i in range(len(themes)):
if themes[i] > 0:
for y in range(side_length):
for x in range(side_length):
if can_place_piece(x,y,i):
# Record progress
old_piece = game_board[y][x]
game_board[y][x] = i
avail_space[y][x] = False
themes[i] -= 1
solution.append([(x+1,y+1),i])
# Keep going
solve_recursion(iteration+1)
# Reset progress
game_board[y][x] = old_piece
avail_space[y][x] = True
themes[i] += 1
solution.pop()
def can_place_piece(x, y, piece):
if not avail_space [y][x]: return False # Case of unavailable space
if game_board [y][x] == piece: return False
if y > 0: # Check up
if game_board [y-1][x] == piece: return False
if y < side_length-1: # Check down
if game_board [y+1][x] == piece: return False
if x > 0: # Check left
if game_board [y][x-1] == piece: return False
if x < side_length-1: # Check right
if game_board [y][x+1] == piece: return False
if x>0 and y>0: # Check NW
if game_board [y-1][x-1] == piece: return False
if x<side_length-1 and y>0: # Check NE
if game_board [y-1][x+1] == piece: return False
if x>0 and y<side_length-1: # Check SW
if game_board [y+1][x-1] == piece: return False
if x<side_length-1 and y<side_length-1: # Check SE
if game_board [y+1][x+1] == piece: return False
return True
def format_board(board):
"""Turns list into square matrix"""
formatted_board = []
side = int(sqrt(len(board)))
for n in range(side):
formatted_board.append(list(board[n*side:(n+1)*side]))
return formatted_board
def reset_globals(board, distribution):
"""Reset global variables necessary for solve()"""
global game_board, avail_space, themes, solution
global sol_counter, call_counter, side_length, distrib_solutions
game_board = format_board(board)
side_length = len(game_board)
avail_space = []
for i in range(side_length):
avail_space.append(side_length*[True])
themes = distribution
solution = []
distrib_solutions = {}
sol_counter, call_counter = 0, 0
def get_boardlist(filename="boards.txt"):
text_file = open(filename, "r")
boardlist = []
for line in text_file:
boardlist.append(eval(line))
text_file.close()
return boardlist
def determine_distribution(board):
count = []
flat_board = [item for sublist in board for item in sublist]
for i in range(5):
count.append(flat_board.count(i))
return tuple(count)
def get_current_min(filename="current_min.txt"):
with open(filename, 'r') as f:
lines = f.read().splitlines()
return eval(lines[-1])
def write_current_min(current_min, filename="current_min.txt"):
with open(filename, 'a') as f:
f.write(str(current_min))
f.write("\n")
if __name__ == '__main__':
main()