-
Notifications
You must be signed in to change notification settings - Fork 704
/
yolov6.cpp
163 lines (144 loc) · 5.64 KB
/
yolov6.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
//
// Created by DefTruth on 2022/6/25.
//
#include "yolov6.h"
#include "lite/ort/core/ort_utils.h"
#include "lite/utils.h"
using ortcv::YOLOv6;
Ort::Value YOLOv6::transform(const cv::Mat &mat_rs)
{
cv::Mat canvas;
cv::cvtColor(mat_rs, canvas, cv::COLOR_BGR2RGB);
canvas.convertTo(canvas, CV_32FC3, 1.f / 255.f, 0.f);
// (1,3,640,640) 1xCXHXW
return ortcv::utils::transform::create_tensor(
canvas, input_node_dims, memory_info_handler,
input_values_handler, ortcv::utils::transform::CHW);
}
// letterbox
void YOLOv6::resize_unscale(const cv::Mat &mat, cv::Mat &mat_rs,
int target_height, int target_width,
YOLOv6ScaleParams &scale_params)
{
if (mat.empty()) return;
int img_height = static_cast<int>(mat.rows);
int img_width = static_cast<int>(mat.cols);
mat_rs = cv::Mat(target_height, target_width, CV_8UC3,
cv::Scalar(114, 114, 114));
// scale ratio (new / old) new_shape(h,w)
float w_r = (float) target_width / (float) img_width;
float h_r = (float) target_height / (float) img_height;
float r = std::min(w_r, h_r);
// compute padding
int new_unpad_w = static_cast<int>((float) img_width * r); // floor
int new_unpad_h = static_cast<int>((float) img_height * r); // floor
int pad_w = target_width - new_unpad_w; // >=0
int pad_h = target_height - new_unpad_h; // >=0
int dw = pad_w / 2;
int dh = pad_h / 2;
// resize with unscaling
cv::Mat new_unpad_mat;
// cv::Mat new_unpad_mat = mat.clone(); // may not need clone.
cv::resize(mat, new_unpad_mat, cv::Size(new_unpad_w, new_unpad_h));
new_unpad_mat.copyTo(mat_rs(cv::Rect(dw, dh, new_unpad_w, new_unpad_h)));
// record scale params.
scale_params.r = r;
scale_params.dw = dw;
scale_params.dh = dh;
scale_params.new_unpad_w = new_unpad_w;
scale_params.new_unpad_h = new_unpad_h;
scale_params.flag = true;
}
void YOLOv6::detect(const cv::Mat &mat, std::vector<types::Boxf> &detected_boxes,
float score_threshold, float iou_threshold, unsigned int topk,
unsigned int nms_type)
{
if (mat.empty()) return;
// this->transform(mat);
const int input_height = input_node_dims.at(2);
const int input_width = input_node_dims.at(3);
int img_height = static_cast<int>(mat.rows);
int img_width = static_cast<int>(mat.cols);
// resize & unscale
cv::Mat mat_rs;
YOLOv6ScaleParams scale_params;
this->resize_unscale(mat, mat_rs, input_height, input_width, scale_params);
// 1. make input tensor
Ort::Value input_tensor = this->transform(mat_rs);
// 2. inference scores & boxes.
auto output_tensors = ort_session->Run(
Ort::RunOptions{nullptr}, input_node_names.data(),
&input_tensor, 1, output_node_names.data(), num_outputs
);
// 3. rescale & exclude.
std::vector<types::Boxf> bbox_collection;
this->generate_bboxes(scale_params, bbox_collection, output_tensors, score_threshold, img_height, img_width);
// 4. hard|blend nms with topk.
this->nms(bbox_collection, detected_boxes, iou_threshold, topk, nms_type);
}
void YOLOv6::generate_bboxes(const YOLOv6ScaleParams &scale_params,
std::vector<types::Boxf> &bbox_collection,
std::vector<Ort::Value> &output_tensors,
float score_threshold, int img_height,
int img_width)
{
Ort::Value &pred = output_tensors.at(0); // (1,n,85=5+80=cxcy+cwch+obj_conf+cls_conf)
auto pred_dims = output_node_dims.at(0); // (1,n,85)
const unsigned int num_anchors = pred_dims.at(1); // n = ?
const unsigned int num_classes = pred_dims.at(2) - 5;
float r_ = scale_params.r;
int dw_ = scale_params.dw;
int dh_ = scale_params.dh;
bbox_collection.clear();
unsigned int count = 0;
for (unsigned int i = 0; i < num_anchors; ++i)
{
float obj_conf = pred.At<float>({0, i, 4});
if (obj_conf < score_threshold) continue; // filter first.
float cls_conf = pred.At<float>({0, i, 5});
unsigned int label = 0;
for (unsigned int j = 0; j < num_classes; ++j)
{
float tmp_conf = pred.At<float>({0, i, j + 5});
if (tmp_conf > cls_conf)
{
cls_conf = tmp_conf;
label = j;
}
}
float conf = obj_conf * cls_conf; // cls_conf (0.,1.)
if (conf < score_threshold) continue; // filter
float cx = pred.At<float>({0, i, 0});
float cy = pred.At<float>({0, i, 1});
float w = pred.At<float>({0, i, 2});
float h = pred.At<float>({0, i, 3});
float x1 = ((cx - w / 2.f) - (float) dw_) / r_;
float y1 = ((cy - h / 2.f) - (float) dh_) / r_;
float x2 = ((cx + w / 2.f) - (float) dw_) / r_;
float y2 = ((cy + h / 2.f) - (float) dh_) / r_;
types::Boxf box;
box.x1 = std::max(0.f, x1);
box.y1 = std::max(0.f, y1);
box.x2 = std::min(x2, (float) img_width - 1.f);
box.y2 = std::min(y2, (float) img_height - 1.f);
box.score = conf;
box.label = label;
box.label_text = class_names[label];
box.flag = true;
bbox_collection.push_back(box);
count += 1; // limit boxes for nms.
if (count > max_nms)
break;
}
#if LITEORT_DEBUG
std::cout << "detected num_anchors: " << num_anchors << "\n";
std::cout << "generate_bboxes num: " << bbox_collection.size() << "\n";
#endif
}
void YOLOv6::nms(std::vector<types::Boxf> &input, std::vector<types::Boxf> &output,
float iou_threshold, unsigned int topk, unsigned int nms_type)
{
if (nms_type == NMS::BLEND) lite::utils::blending_nms(input, output, iou_threshold, topk);
else if (nms_type == NMS::OFFSET) lite::utils::offset_nms(input, output, iou_threshold, topk);
else lite::utils::hard_nms(input, output, iou_threshold, topk);
}