-
Notifications
You must be signed in to change notification settings - Fork 707
/
Copy pathmnn_pipnet98.cpp
206 lines (188 loc) · 7.56 KB
/
mnn_pipnet98.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
//
// Created by DefTruth on 2022/3/20.
//
#include "mnn_pipnet98.h"
using mnncv::MNNPIPNet98;
MNNPIPNet98::MNNPIPNet98(const std::string &_mnn_path, unsigned int _num_threads)
: BasicMNNHandler(_mnn_path, _num_threads)
{
initialize_pretreat();
}
inline void MNNPIPNet98::initialize_pretreat()
{
pretreat = std::shared_ptr<MNN::CV::ImageProcess>(
MNN::CV::ImageProcess::create(
MNN::CV::BGR,
MNN::CV::RGB,
mean_vals, 3,
norm_vals, 3
)
);
}
void MNNPIPNet98::transform(const cv::Mat &mat)
{
cv::Mat canvas;
cv::resize(mat, canvas, cv::Size(input_width, input_height));
// (1,3,256,256) will do deepcopy inside MNN convert process
pretreat->convert(canvas.data, input_width, input_height, canvas.step[0], input_tensor);
}
void MNNPIPNet98::detect(const cv::Mat &mat, types::Landmarks &landmarks)
{
if (mat.empty()) return;
// this->transform(mat);
float img_height = static_cast<float>(mat.rows);
float img_width = static_cast<float>(mat.cols);
// 1. make input tensor
this->transform(mat);
// 2. inference
mnn_interpreter->runSession(mnn_session);
auto output_tensors = mnn_interpreter->getSessionOutputAll(mnn_session);
// 3. generate landmarks
this->generate_landmarks(landmarks, output_tensors, img_height, img_width);
}
void MNNPIPNet98::generate_landmarks(types::Landmarks &landmarks,
const std::map<std::string, MNN::Tensor *> &output_tensors,
float img_height, float img_width)
{
auto device_outputs_cls_ptr = output_tensors.at("outputs_cls"); // (1,98,8,8)
auto device_outputs_x_ptr = output_tensors.at("outputs_x"); // (1,98,8,8)
auto device_outputs_y_ptr = output_tensors.at("outputs_y"); // (1,98,8,8)
auto device_outputs_nb_x_ptr = output_tensors.at("outputs_nb_x"); // (1,98*10,8,8)
auto device_outputs_nb_y_ptr = output_tensors.at("outputs_nb_y"); // (1,98*10,8,8)
MNN::Tensor host_outputs_cls_tensor(device_outputs_cls_ptr, device_outputs_cls_ptr->getDimensionType());
MNN::Tensor host_outputs_x_tensor(device_outputs_x_ptr, device_outputs_x_ptr->getDimensionType());
MNN::Tensor host_outputs_y_tensor(device_outputs_y_ptr, device_outputs_y_ptr->getDimensionType());
MNN::Tensor host_outputs_nb_x_tensor(device_outputs_nb_x_ptr, device_outputs_nb_x_ptr->getDimensionType());
MNN::Tensor host_outputs_nb_y_tensor(device_outputs_nb_y_ptr, device_outputs_nb_y_ptr->getDimensionType());
device_outputs_cls_ptr->copyToHostTensor(&host_outputs_cls_tensor);
device_outputs_x_ptr->copyToHostTensor(&host_outputs_x_tensor);
device_outputs_y_ptr->copyToHostTensor(&host_outputs_y_tensor);
device_outputs_nb_x_ptr->copyToHostTensor(&host_outputs_nb_x_tensor);
device_outputs_nb_y_ptr->copyToHostTensor(&host_outputs_nb_y_tensor);
auto cls_shape = host_outputs_cls_tensor.shape();
const unsigned int grid_h = cls_shape.at(2); // 8
const unsigned int grid_w = cls_shape.at(3); // 8
const unsigned int grid_length = grid_h * grid_w; // 8 * 8 = 64
const unsigned int input_h = input_height;
const unsigned int input_w = input_width;
const float *outputs_cls_ptr = host_outputs_cls_tensor.host<float>();
const float *outputs_x_ptr = host_outputs_x_tensor.host<float>();
const float *outputs_y_ptr = host_outputs_y_tensor.host<float>();
const float *outputs_nb_x_ptr = host_outputs_nb_x_tensor.host<float>();
const float *outputs_nb_y_ptr = host_outputs_nb_y_tensor.host<float>();
// find max_ids
std::vector<unsigned int> max_ids(num_lms);
for (unsigned int i = 0; i < num_lms; ++i)
{
const float *score_ptr = outputs_cls_ptr + i * grid_length;
unsigned int max_id = 0;
float max_score = score_ptr[0];
for (unsigned int j = 0; j < grid_length; ++j)
{
if (score_ptr[j] > max_score)
{
max_score = score_ptr[j];
max_id = j;
}
}
max_ids[i] = max_id; // range 0~64
}
// find x & y offsets
std::vector<float> output_x_select(num_lms);
std::vector<float> output_y_select(num_lms);
for (unsigned int i = 0; i < num_lms; ++i)
{
const float *offset_x_ptr = outputs_x_ptr + i * grid_length;
const float *offset_y_ptr = outputs_y_ptr + i * grid_length;
const unsigned int max_id = max_ids.at(i);
output_x_select[i] = offset_x_ptr[max_id];
output_y_select[i] = offset_y_ptr[max_id];
}
// find nb_x & nb_y offsets
std::unordered_map<unsigned int, std::vector<float>> output_nb_x_select;
std::unordered_map<unsigned int, std::vector<float>> output_nb_y_select;
// initialize offsets map
for (unsigned int i = 0; i < num_lms; ++i)
{
std::vector<float> nb_x_offset(num_nb);
std::vector<float> nb_y_offset(num_nb);
output_nb_x_select[i] = nb_x_offset;
output_nb_y_select[i] = nb_y_offset;
}
for (unsigned int i = 0; i < num_lms; ++i)
{
for (unsigned int j = 0; j < num_nb; ++j)
{
const float *offset_nb_x_ptr = outputs_nb_x_ptr + (i * num_nb + j) * grid_length;
const float *offset_nb_y_ptr = outputs_nb_y_ptr + (i * num_nb + j) * grid_length;
const unsigned int max_id = max_ids.at(i);
output_nb_x_select[i][j] = offset_nb_x_ptr[max_id];
output_nb_y_select[i][j] = offset_nb_y_ptr[max_id];
}
}
// calculate coords
std::vector<float> lms_pred_x(num_lms); // 98
std::vector<float> lms_pred_y(num_lms); // 98
std::unordered_map<unsigned int, std::vector<float>> lms_pred_nb_x; // 98,10
std::unordered_map<unsigned int, std::vector<float>> lms_pred_nb_y; // 98,10
// initialize pred maps
for (unsigned int i = 0; i < num_lms; ++i)
{
std::vector<float> nb_x_offset(num_nb);
std::vector<float> nb_y_offset(num_nb);
lms_pred_nb_x[i] = nb_x_offset;
lms_pred_nb_y[i] = nb_y_offset;
}
for (unsigned int i = 0; i < num_lms; ++i)
{
float cx = static_cast<float>(max_ids.at(i) % grid_w);
float cy = static_cast<float>(max_ids.at(i) / grid_w);
// calculate coords & normalize
lms_pred_x[i] = ((cx + output_x_select[i]) * (float) net_stride) / (float) input_w;
lms_pred_y[i] = ((cy + output_y_select[i]) * (float) net_stride) / (float) input_h;
for (unsigned int j = 0; j < num_nb; ++j)
{
lms_pred_nb_x[i][j] = ((cx + output_nb_x_select[i][j]) * (float) net_stride) / (float) input_w;
lms_pred_nb_y[i][j] = ((cy + output_nb_y_select[i][j]) * (float) net_stride) / (float) input_h;
}
}
// reverse indexes
std::unordered_map<unsigned int, std::vector<float>> tmp_nb_x; // 98,max_len
std::unordered_map<unsigned int, std::vector<float>> tmp_nb_y; // 98,max_len
// initialize reverse maps
for (unsigned int i = 0; i < num_lms; ++i)
{
std::vector<float> tmp_x(max_len);
std::vector<float> tmp_y(max_len);
tmp_nb_x[i] = tmp_x;
tmp_nb_y[i] = tmp_y;
}
for (unsigned int i = 0; i < num_lms; ++i)
{
for (unsigned int j = 0; j < max_len; ++j)
{
unsigned int ri = reverse_index1[i * max_len + j];
unsigned int rj = reverse_index2[i * max_len + j];
tmp_nb_x[i][j] = lms_pred_nb_x[ri][rj];
tmp_nb_y[i][j] = lms_pred_nb_y[ri][rj];
}
}
// merge predictions
landmarks.points.clear();
for (unsigned int i = 0; i < num_lms; ++i)
{
float total_x = lms_pred_x[i];
float total_y = lms_pred_y[i];
for (unsigned int j = 0; j < max_len; ++j)
{
total_x += tmp_nb_x[i][j];
total_y += tmp_nb_y[i][j];
}
float x = total_x / ((float) max_len + 1.f);
float y = total_y / ((float) max_len + 1.f);
x = std::min(std::max(0.f, x), 1.0f);
y = std::min(std::max(0.f, y), 1.0f);
landmarks.points.push_back(cv::Point2f(x * img_width, y * img_height));
}
landmarks.flag = true;
}