-
Notifications
You must be signed in to change notification settings - Fork 0
/
ppo_vec_envs_image.py
269 lines (221 loc) · 10.8 KB
/
ppo_vec_envs_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
#Modified this code - https://github.com/DeepReinforcementLearning/DeepReinforcementLearningInAction/blob/master/Chapter%204/Ch4_book.ipynb
#Also, modified this code - https://github.com/higgsfield/RL-Adventure-2/blob/master/1.actor-critic.ipynb
# Also, modified this code - https://github.com/ericyangyu/PPO-for-Beginners/blob/9abd435771aa84764d8d0d1f737fa39118b74019/ppo.py#L151
# Got a lot of help from the subreddit - reinforcement_learning
from tensorflow.python.autograph.operators.py_builtins import max_
from torch._C._return_types import max
if __name__ == '__main__':
import numpy as np
import gymnasium as gym
from gymnasium.wrappers import AtariPreprocessing
import torch
import random
import matplotlib.pyplot as plt
from torch import nn
import torchvision as tv
import torch.nn.functional as F
torch.manual_seed(798)
import matplotlib.pyplot as plt
torch.manual_seed(0)
random.seed(0)
np.random.seed(0)
from collections import deque
num_envs = 12
ent_coeff = 0.03
num_channels = 1
batches = 4
channels = 3
learning_rate = 0.00025
episodes = 1500
gae_lambda = 0.95
gamma = 0.99
clip = 0.2
grad_clip = 5
rollout_steps = 200
training_iters = 4
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# import envpool
#
# env = envpool.make("Pong-v5", env_type="gymnasium", num_envs=num_envs)
# # env = AtariPreprocessing(env)
env = gym.vector.make("BreakoutNoFrameskip-v4", num_envs=num_envs,wrappers=AtariPreprocessing, asynchronous=False)
actor_PATH = './actor_model' + 'breakout' + '.pt'
critic_PATH = './critic_model ' + 'pong'+ '.pt'
square_size = env.observation_space.shape[-1]
class Actor(nn.Module):
def __init__(self, state_size, action_size):
super(Actor, self).__init__()
self.state_size = state_size
self.action_size = action_size
self.conv1 = nn.Conv2d(num_channels, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 3)
self.conv3 = nn.Conv2d(16, 32, 3)
self.fc1 = nn.Linear(2048, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, action_size)
self.last = nn.Softmax(dim=-1)
def forward(self,x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = self.pool(F.relu(self.conv3(x)))
x = torch.flatten(x, 1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
x = self.last(x)
return x
class Critic(nn.Module):
def __init__(self, state_size, action_size):
super(Critic, self).__init__()
self.state_size = state_size
self.action_size = action_size
self.conv1 = nn.Conv2d(num_channels, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 3)
self.conv3 = nn.Conv2d(16, 32, 3)
self.fc1 = nn.Linear(2048, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 1)
def forward(self, x):
x = x.reshape(-1, 1, square_size, square_size)
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = self.pool(F.relu(self.conv3(x)))
x = torch.flatten(x, 1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
actor = Actor(env.observation_space.shape[-1], env.action_space[0].n).to(device)
critic = Critic(env.observation_space.shape[-1], 1).to(device)
policy_opt = torch.optim.Adam(params = actor.parameters(), lr = learning_rate)
value_opt = torch.optim.Adam(params = critic.parameters(), lr = learning_rate)
obs = torch.tensor(env.reset()[0], dtype=torch.float32).to(device)
tot_rewards = np.array([0 for i in range(num_envs)], dtype=float)
final_scores = []
last_n_rewards = deque(maxlen=10)
def rollout(obs): #todo Why can't the rollout function access it from outside?
all_rewards = []
all_actions = []
all_actions_probs = []
all_observations = []
all_dones = []
global tot_rewards #todo Why did I have to declare tot_rewards as global?
for i in range(rollout_steps):
obs = obs.reshape(num_envs, 1, square_size, square_size)
act_probs = torch.distributions.Categorical(actor(obs.to(device)).squeeze())
action = act_probs.sample().squeeze()
action = action.cpu().detach().numpy()
next_state, reward, done, truncated, info = env.step(action)
action = torch.tensor(action, dtype=torch.float32).to(device)
# These statistics help determine how well the agent is performing.
tot_rewards += reward
for reward_val, done_val in zip(tot_rewards, done):
if done_val:
last_n_rewards.append(reward_val)
final_scores.append(reward_val)
tot_rewards[done] = 0
all_rewards.append(reward)
all_dones.append(done)
all_observations.append(obs.cpu().detach().numpy())
all_actions.append(action.cpu().detach().numpy())
all_actions_probs.append(act_probs.log_prob(action).cpu().detach().numpy())
obs = torch.tensor(next_state, dtype=torch.float32)
# Computing values over here
eps_rew = critic(obs.to(device)).cpu().detach().numpy().reshape(-1)
eps_rew_list = []
state_value_list = []
for reward, done in zip(reversed(all_rewards), reversed(all_dones)):
eps_rew[done] = 0
eps_rew = eps_rew*gamma + reward
eps_rew_list.append(eps_rew.copy())
next_adv = np.array([0 for i in range(num_envs)], dtype=float)
batch_obs = torch.Tensor(all_observations).reshape(-1, num_envs, square_size, square_size)
for rtgs in reversed(eps_rew_list):
state_value_list.append(rtgs)
# Computing advantages over here, A = Q - V
val_next_state = eps_rew.copy()
inv_eps_adv_list = []
for reward,done,obs in zip(reversed(all_rewards), reversed(all_dones), reversed(batch_obs)):
next_adv[done] = 0
val_next_state[done] = 0
val_current_state = critic(obs.to(device)).cpu().detach().numpy().reshape(-1)
delta = reward + gamma*val_next_state-val_current_state
adv = delta + gae_lambda * gamma * next_adv
inv_eps_adv_list.append(adv)
next_adv = adv.copy()
val_next_state = val_current_state.copy()
final_adv_list = []
for a in reversed(inv_eps_adv_list):
final_adv_list.append(a)
# Returning all the data from the rollout. `obs` needs to be returned because the episode might not be over
# for some environment
batch_obs = torch.Tensor(all_observations).reshape(-1,env.observation_space.shape[1]).to(device)
batch_act = torch.Tensor(np.array(all_actions).reshape(-1)).to(device)
batch_log_probs = torch.Tensor(np.array(all_actions_probs).reshape(-1)).to(device)
batch_rtgs = torch.Tensor(state_value_list).reshape(-1).to(device)
batch_advantages = torch.Tensor(final_adv_list).reshape(-1).to(device)
return batch_obs, batch_act, batch_log_probs, batch_rtgs, batch_advantages, obs
#Learning Phase
for episode in range(episodes):
print("episodes = ", episode)
all_obs, all_act, all_log_probs, all_rtgs, all_advantages, obs = rollout(obs)
all_obs = all_obs.reshape(-1, 1, square_size, square_size)
assert (all_obs.shape == (rollout_steps*num_envs, num_channels, square_size, square_size))
assert (all_act.shape == (rollout_steps*num_envs,))
assert (all_log_probs.shape == (rollout_steps*num_envs,))
assert (all_rtgs.shape == (rollout_steps*num_envs,))
assert (all_advantages.shape == (rollout_steps*num_envs,))
# Standardize all advantages
all_advantages = (all_advantages - all_advantages.mean()) / (all_advantages.std() + 1e-8)
for i in range(training_iters):
print("Training Iteration = ", i)
total_examples = num_envs * rollout_steps
batch_size = total_examples // batches
batch_starts = np.arange(0, total_examples, batch_size)
indices = np.arange(total_examples, dtype=np.int32)
np.random.shuffle(indices)
for batch_start in batch_starts:
batch_end = batch_start + batch_size
batch_index = indices[batch_start:batch_end]
batch_obs = all_obs[batch_index]
batch_act = all_act[batch_index]
batch_log_probs = all_log_probs[batch_index]
batch_rtgs = all_rtgs[batch_index]
batch_advantages = all_advantages[batch_index]
value = critic(batch_obs).squeeze()
assert(value.ndim==1)
policy = actor(batch_obs)
act_probs = torch.distributions.Categorical(policy)
batch_entropy = act_probs.entropy().mean()
log_probs = act_probs.log_prob(batch_act).squeeze()
ratios = torch.exp(log_probs - batch_log_probs)
assert(ratios.ndim==1)
surr1 = ratios*batch_advantages
assert (surr1.ndim == 1)
surr2 = torch.clamp(ratios, 1 - clip, 1 + clip)*batch_advantages
assert (surr2.ndim == 1)
actor_loss = -torch.min(surr1, surr2).mean() - ent_coeff*batch_entropy
critic_loss = (value - batch_rtgs).pow(2).mean()
#todo No idea why we are doing retain_graph = True
policy_opt.zero_grad()
actor_loss.backward()
max_gradient = np.max(np.array(list((param.grad.max().item()) for param in actor.parameters())))
if max_gradient > grad_clip:
print("Gradients blowing up")
torch.nn.utils.clip_grad_norm_(actor.parameters(), grad_clip)
policy_opt.step()
value_opt.zero_grad()
critic_loss.backward()
max_gradient = np.max(np.array(list((param.grad.max().item()) for param in critic.parameters())))
if max_gradient > grad_clip:
print("Gradients blowing up")
torch.nn.utils.clip_grad_norm_(critic.parameters(), grad_clip)
value_opt.step()
if episode % 100 == 0:
print("Saved")
torch.save(actor.state_dict(), actor_PATH)
torch.save(critic.state_dict(), critic_PATH)
plt.plot(final_scores)
plt.show()