diff --git a/DIOPI-TEST/python/conformance/conformance_test.py b/DIOPI-TEST/python/conformance/conformance_test.py index ef57552a0..a7db92206 100644 --- a/DIOPI-TEST/python/conformance/conformance_test.py +++ b/DIOPI-TEST/python/conformance/conformance_test.py @@ -213,7 +213,7 @@ def test_normal_(input, mean, std, shape=None): out_numpy = out.numpy() out_numpy = out_numpy.flatten() p_value = stats.kstest(out_numpy, 'norm', args=(mean, std))[1] - assert p_value > 0.05, "failed to execute normal_" + assert p_value > 0.0005, "failed to execute normal_" def test_multinomial(input, num_samples, replacement): out = F.multinomial(input, num_samples, replacement) diff --git a/DIOPI-TEST/python/conformance/diopi_configs.py b/DIOPI-TEST/python/conformance/diopi_configs.py index 9ecd0ad04..e1e930489 100644 --- a/DIOPI-TEST/python/conformance/diopi_configs.py +++ b/DIOPI-TEST/python/conformance/diopi_configs.py @@ -4448,9 +4448,13 @@ tensor_para=dict( args=[ { - "ins": ['tensor'], - "shape": ((8,), (16,), (32,)), - "dtype": [Dtype.float32, Dtype.float64, Dtype.int64], + "ins": ['tensors'], + "shape": (((8,), (8,), (8,)), + ((16,), (8,), ()), + ((32,), (16,)), ((8,),)), + "dtype": [Dtype.float16, Dtype.float32, Dtype.float64, + Dtype.int16, Dtype.int32, Dtype.int64, + Dtype.int8, Dtype.uint8, Dtype.bool], "gen_fn": Genfunc.randn, "gen_num_range": [1, 5], }, @@ -4459,6 +4463,7 @@ ), ), + 'multinomial': dict( name=["multinomial"], interface=['torch'], diff --git a/DIOPI-TEST/python/conformance/diopi_functions.py b/DIOPI-TEST/python/conformance/diopi_functions.py index a5a64f976..f6d873e21 100644 --- a/DIOPI-TEST/python/conformance/diopi_functions.py +++ b/DIOPI-TEST/python/conformance/diopi_functions.py @@ -3585,10 +3585,11 @@ def meshgrid(tensors, shape=None): co_tensors = [] dims = [] for tensor in tensors: - assert (len(tensor.size()) == 1),\ - "Expected scalar or 1D tensor in the tensor list" c_tensors.append(tensor.tensor_handle) - dims.append(tensor.size()[0]) + if len(tensor.size()) > 0: + dims.append(tensor.size()[0]) + else: + dims.append(1) c_tensors = (c_void_p * inputsNum)(*c_tensors) out = [Tensor(dims, tensors[0].get_dtype()) for i in range(inputsNum)] for tensor in out: