Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix Data Adapter for Segmentation #1654

Merged
merged 4 commits into from
Nov 22, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -36,4 +36,4 @@ numpy<=1.23
rapidfuzz
json-tricks==3.16.1
onnx-simplifier>=0.4.3,<1.0
data-gradients>=0.3.0
data-gradients~=0.3.1
Original file line number Diff line number Diff line change
Expand Up @@ -48,5 +48,4 @@ def __call__(self, samples: Iterable[SupportedDataType]) -> Tuple[torch.Tensor,
images, targets = super().__call__(samples=samples) # This already returns a batch of (images, targets)
transform = SegmentationDataSet.get_normalize_transform()
images = transform(images / 255) # images are [0-255] after the data adapter
targets = targets.argmax(1)
return images, targets
6 changes: 6 additions & 0 deletions tests/deci_core_unit_test_suite_runner.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,9 @@
DynamicModelTests,
TestExportRecipe,
TestMixedPrecisionDisabled,
TestClassificationAdapter,
TestDetectionAdapter,
TestSegmentationAdapter,
)
from tests.end_to_end_tests import TestTrainer
from tests.unit_tests.test_convert_recipe_to_code import TestConvertRecipeToCode
Expand Down Expand Up @@ -172,6 +175,9 @@ def _add_modules_to_unit_tests_suite(self):
self.unit_tests_suite.addTest(self.test_loader.loadTestsFromModule(TestConvertRecipeToCode))
self.unit_tests_suite.addTest(self.test_loader.loadTestsFromModule(TestVersionCheck))
self.unit_tests_suite.addTest(self.test_loader.loadTestsFromModule(TestModelWeightAveraging))
self.unit_tests_suite.addTest(self.test_loader.loadTestsFromModule(TestClassificationAdapter))
self.unit_tests_suite.addTest(self.test_loader.loadTestsFromModule(TestDetectionAdapter))
self.unit_tests_suite.addTest(self.test_loader.loadTestsFromModule(TestSegmentationAdapter))

def _add_modules_to_end_to_end_tests_suite(self):
"""
Expand Down
17 changes: 13 additions & 4 deletions tests/integration_tests/data_adapter/test_dataloader_adapter.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
import os.path
import unittest
import tempfile
import shutil
Expand All @@ -10,6 +11,7 @@
from data_gradients.managers.segmentation_manager import SegmentationAnalysisManager
from data_gradients.managers.classification_manager import ClassificationAnalysisManager
from data_gradients.dataset_adapters.config.data_config import SegmentationDataConfig
from data_gradients.utils.data_classes.image_channels import ImageChannels

from super_gradients.training.dataloaders.adapters import (
DetectionDataloaderAdapterFactory,
Expand All @@ -20,7 +22,10 @@

class DataloaderAdapterTest(unittest.TestCase):
def setUp(self) -> None:
self.tmp_dir = tempfile.mkdtemp()
if os.getenv("DEBUG_DIR"): # This is useful when debugging locally, to avoid downloading the dataset everytime
self.tmp_dir = os.path.join(os.getenv("DEBUG_DIR"), "DataloaderAdapterNonRegressionTest")
else:
self.tmp_dir = tempfile.mkdtemp()

def tearDown(self):
shutil.rmtree(self.tmp_dir)
Expand All @@ -38,8 +43,10 @@ def __call__(self, pic):
log_dir=self.tmp_dir,
report_title="Caltech101",
class_names=train_set.categories,
image_channels=ImageChannels.from_str("RGB"),
is_batch=False,
labels_extractor="[1]", # dataset returns (image, label)
batches_early_stop=4,
n_image_channels=3,
use_cache=True,
)
analyzer.run()
Expand Down Expand Up @@ -121,7 +128,8 @@ def voc_format_to_bbox(sample: tuple) -> np.ndarray:
train_data=train_set,
val_data=val_set,
labels_extractor=voc_format_to_bbox,
class_names=PASCAL_VOC_CLASS_NAMES,
class_names=list(PASCAL_VOC_CLASS_NAMES),
image_channels=ImageChannels.from_str("RGB"),
# class_names=train_set,
batches_early_stop=20,
use_cache=True, # With this we will be asked about the dataset information only once
Expand Down Expand Up @@ -181,7 +189,8 @@ def test_torchvision_segmentation(self):
log_dir=self.tmp_dir,
train_data=train_set,
val_data=val_set,
class_names=list(range(256)),
class_names=[f"class_{i}" for i in range(256)],
image_channels=ImageChannels.from_str("RGB"),
# class_names=train_set,
batches_early_stop=20,
use_cache=True, # With this we will be asked about the dataset information only once
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@
from data_gradients.managers.detection_manager import DetectionAnalysisManager
from data_gradients.managers.segmentation_manager import SegmentationAnalysisManager
from data_gradients.managers.classification_manager import ClassificationAnalysisManager
from data_gradients.utils.data_classes.image_channels import ImageChannels

from super_gradients.training.dataloaders.dataloaders import coco2017_val, cityscapes_stdc_seg50_val, cifar10_val
from super_gradients.training.dataloaders.adapters import (
Expand Down Expand Up @@ -36,6 +37,7 @@ def test_adapter_on_coco2017_val(self):
train_data=loader,
val_data=loader,
class_names=loader.dataset.classes,
image_channels=ImageChannels.from_str("RGB"),
batches_early_stop=20,
use_cache=True, # With this we will be asked about the data information only once
bbox_format="cxcywh",
Expand All @@ -60,6 +62,7 @@ def test_adapter_on_cityscapes_stdc_seg50_val(self):
train_data=loader,
val_data=loader,
class_names=loader.dataset.classes + ["<unknown>"],
image_channels=ImageChannels.from_str("RGB"),
batches_early_stop=1,
use_cache=True, # With this we will be asked about the data information only once
)
Expand All @@ -69,6 +72,7 @@ def test_adapter_on_cityscapes_stdc_seg50_val(self):

for (adapted_images, adapted_targets), (images, targets) in zip(adapted_loader, loader):
assert np.isclose(adapted_targets, targets).all()
assert np.isclose(adapted_images, images).all()
os.remove(analyzer.data_config.cache_path)

def test_adapter_on_cifar10_val(self):
Expand All @@ -81,6 +85,7 @@ def test_adapter_on_cifar10_val(self):
train_data=loader,
val_data=loader,
class_names=list(range(10)),
image_channels=ImageChannels.from_str("RGB"),
batches_early_stop=20,
use_cache=True, # With this we will be asked about the data information only once
)
Expand All @@ -93,88 +98,31 @@ def test_adapter_on_cifar10_val(self):
assert np.isclose(adapted_images, images).all()
os.remove(analyzer.data_config.cache_path)

def test_adpter_from_dict(self):
def test_ddp_python_based_adapter(self):
# setup_device(num_gpus=3)

# We use Validation set because it does not include augmentation (which is random and makes it impossible to compare results)
loader = coco2017_val(
dataset_params={"max_num_samples": 500, "with_crowd": False},
dataloader_params={"collate_fn": "DetectionCollateFN"},
) # `max_num_samples` To make it faster
loader = cifar10_val(dataset_params={"transforms": ["ToTensor"]})

analyzer = DetectionAnalysisManager(
report_title="coco2017_val_dict",
analyzer = ClassificationAnalysisManager(
report_title="test_python_classification",
log_dir=self.tmp_dir,
train_data=loader,
val_data=loader,
class_names=loader.dataset.classes,
class_names=list(range(10)),
image_channels=ImageChannels.from_str("RGB"),
batches_early_stop=20,
use_cache=True, # With this we will be asked about the data information only once
bbox_format="cxcywh",
is_label_first=True,
)
analyzer.run()

# Here we mimic how it works when loading from a recipe
adapted_loader = coco2017_val(
dataset_params={"max_num_samples": 500, "with_crowd": False},
dataloader_params={
"collate_fn": {
"DetectionDatasetAdapterCollateFN": {
"base_collate_fn": "DetectionCollateFN",
"config_path": analyzer.data_config.cache_path,
}
}
},
)
adapted_loader = ClassificationDataloaderAdapterFactory.from_dataloader(dataloader=loader, config_path=analyzer.data_config.cache_path)

for (adapted_images, adapted_targets), (images, targets) in zip(adapted_loader, loader):
assert np.isclose(adapted_targets, targets).all()
assert np.isclose(adapted_images, images).all()
os.remove(analyzer.data_config.cache_path)

def test_ddp_from_dict_based_adapter(self):
# setup_device(num_gpus=3)

# We use Validation set because it does not include augmentation (which is random and makes it impossible to compare results)
loader = coco2017_val(
dataset_params={"max_num_samples": 500, "with_crowd": False},
dataloader_params={"num_workers": 4, "collate_fn": "DetectionCollateFN"},
)

# We use Validation set because it does not include augmentation (which is random and makes it impossible to compare results)
adapted_loader = coco2017_val(
dataset_params={"max_num_samples": 500, "with_crowd": False}, # `max_num_samples` To make it faster
dataloader_params={
"num_workers": 4,
"collate_fn": {
"DetectionDatasetAdapterCollateFN": {
"base_collate_fn": "DetectionCollateFN",
"config_path": os.path.join(self.tmp_dir, "test_ddp_from_dict_based_adapter.json"),
}
},
},
)

for (adapted_images, adapted_targets), (images, targets) in zip(adapted_loader, loader):
assert np.isclose(adapted_targets, targets).all()
assert np.isclose(adapted_images, images).all()

def test_ddp_python_based_adapter(self):
# setup_device(num_gpus=3)

# We use Validation set because it does not include augmentation (which is random and makes it impossible to compare results)
loader = coco2017_val(
dataset_params={"max_num_samples": 500, "with_crowd": False}, # `max_num_samples` To make it faster
dataloader_params={"num_workers": 4, "collate_fn": "DetectionCollateFN"},
)
adapted_loader = DetectionDataloaderAdapterFactory.from_dataloader(
dataloader=loader,
config_path=os.path.join(self.tmp_dir, "test_ddp_python_based_adapter.json"),
)

for (adapted_images, adapted_targets), (images, targets) in zip(adapted_loader, loader):
assert np.isclose(adapted_targets, targets).all()
assert np.isclose(adapted_images, images).all()


if __name__ == "__main__":
DataloaderAdapterNonRegressionTest()
4 changes: 4 additions & 0 deletions tests/unit_tests/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,7 @@
from tests.unit_tests.test_deprecate import TestDeprecationDecorator
from tests.unit_tests.test_models_factory import DynamicModelTests
from tests.unit_tests.test_mixed_precision_cpu import TestMixedPrecisionDisabled
from tests.unit_tests.test_data_adapters import TestClassificationAdapter, TestDetectionAdapter, TestSegmentationAdapter

__all__ = [
"CrashTipTest",
Expand Down Expand Up @@ -61,4 +62,7 @@
"TestMixedPrecisionDisabled",
"DynamicModelTests",
"TestExportRecipe",
"TestClassificationAdapter",
"TestDetectionAdapter",
"TestSegmentationAdapter",
]
Loading