forked from lettergram/sentence-classification
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sentence_cnn.py
84 lines (59 loc) · 2.19 KB
/
sentence_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
'''
Written by Austin Walters
Last Edit: January 2, 2019
For use on austingwalters.com
A CNN to classify a sentence as one
of the common sentance types:
Question, Statement, Command, Exclamation
Heavily Inspired by Keras Examples:
https://github.com/keras-team/keras
'''
from __future__ import print_function
import numpy as np
import keras
from sentence_types import load_encoded_data
from keras.preprocessing import sequence
from keras.models import Sequential, model_from_json
from keras.layers import Dense, Dropout, Activation
from keras.layers import Embedding, Conv1D, GlobalMaxPooling1D
from keras.preprocessing.text import Tokenizer
max_words = 10000
maxlen = 500
batch_size = 64
embedding_dims = 50
filters = 250
kernel_size = 5
hidden_dims = 150
epochs = 2
x_train, x_test, y_train, y_test = load_encoded_data(data_split=0.8,
embedding_name="data/default",
pos_tags=True)
num_classes = np.max(y_train) + 1
print(num_classes, 'classes')
print('Pad sequences (samples x time)')
x_train = sequence.pad_sequences(x_train, maxlen=maxlen)
x_test = sequence.pad_sequences(x_test, maxlen=maxlen)
print('Convert class vector to binary class matrix '
'(for use with categorical_crossentropy)')
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
print('Constructing model!')
model = Sequential()
model.add(Embedding(max_words, embedding_dims,
input_length=maxlen))
model.add(Dropout(0.2))
model.add(Conv1D(filters, kernel_size, padding='valid',
activation='relu', strides=1))
model.add(GlobalMaxPooling1D())
model.add(Dense(hidden_dims))
model.add(Dropout(0.2))
model.add(Activation('relu'))
model.add(Dense(num_classes))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='adam', metrics=['accuracy'])
model.fit(x_train, y_train, batch_size=batch_size,
epochs=epochs, validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test,
batch_size=batch_size, verbose=1)
print('Test accuracy:', score[1])