forked from DeCenter-AI/decenter-ai.streamlit.app
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
238 lines (192 loc) · 6.35 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import logging
import shutil
import subprocess
import sys
import time
import zipfile
from typing import List
import streamlit as st
from config.constants import *
from config.log import setup_log
from enums.app_v3 import App
from utils.exec_commands import get_notebook_cmd
from utils.helper_find import (
find_requirements_txt_files,
find_driver_scripts,
find_demos,
)
from utils.install_deps import install_dependencies
from views.head import head_v3
setup_log()
load_dotenv()
head_v3()
option = st.selectbox(
"App Version",
("v3", "v2", "v1"),
help="versioning documentation with feature lists coming up soon",
)
app: App = st.session_state.get("app")
if not app:
app = App()
logging.info("creating new app instance")
st.session_state.app = app
app.reset_on_new_model_train()
if option != app.version: # don't redirect if in the same page
st.markdown(
f'<meta http-equiv="refresh" content="0;URL=/{option}">',
unsafe_allow_html=True,
)
app.selected_demo = st.selectbox(
"Demo",
find_demos(),
help="enabled when no input archive is uploaded",
disabled=not app.demo,
key="selected_demo",
)
input_archive = st.file_uploader(
"Upload Training Workspace Archive with Datasets",
type=["zip"],
key="input_archive",
help="Include trainscript[.py,ipynb] and datasets",
)
demo = input_archive is None
if demo != app.demo:
app.demo = demo
logging.info(f"demo mode set {app.demo}->{demo}")
st.experimental_rerun()
if not app.demo and input_archive:
model_name = os.path.splitext(os.path.basename(input_archive.name))[0]
app.model_name = model_name
if not app.demo:
model_name = st.text_input(
"Model Name",
max_chars=50,
placeholder="decenter-model",
key="model_name",
value=app.model_name,
disabled=app.demo,
)
if model_name and app.model_name != model_name:
app.model_name = model_name
if app.model_name not in app.work_dir:
logging.info("creating new app.work_dir")
app.recycle_temp_dir()
if app.demo:
if not app.selected_demo:
st.error("demo: not found")
logging.critical("demo: not found")
st.stop()
with zipfile.ZipFile(app.selected_demo_path, "r") as zip_ref:
zip_ref.extractall(app.work_dir)
app.python_repl = sys.executable
else:
with zipfile.ZipFile(input_archive, "r") as zip_ref:
zip_ref.extractall(app.work_dir)
extracted_files = os.listdir(app.work_dir)
logging.info(f"extracted: {extracted_files}")
logging.info(f"work_dir: {app.work_dir}")
app.create_venv()
app.training_script = st.selectbox(
"Training Script:",
find_driver_scripts(app.work_dir),
)
if not app.training_script:
logging.critical("starter_script:not found")
st.error("starter_script:not found; app exiting")
st.stop()
execution_environment: str = os.path.splitext(app.training_script)[1]
training_cmd: List[str]
match execution_environment:
case ".py":
app.environment = PYTHON
requirements = st.selectbox(
"Select dependencies to install",
find_requirements_txt_files(
app.work_dir,
),
)
if requirements:
with st.spinner("Installing dependencies in progress"):
app.requirements_path = os.path.join(
app.work_dir,
requirements,
)
install_dependencies(
app.python_repl,
app.requirements_path,
cwd=app.work_dir,
)
training_cmd = [app.python_repl, app.training_script]
case ".ipynb":
app.environment = JUPYTER_NOTEBOOK
training_cmd = get_notebook_cmd(
app.training_script,
app.python_repl,
)
case _:
st.error("invalid trainer script-Raise issue")
logging.critical(f"invalid trainer script- {app.training_script}")
st.stop()
if not training_cmd:
st.error("invalid training_cmd-Raise Issue")
st.stop()
if st.button("Train", key="train"):
logging.info(f"starter_script - {app.training_script}")
st.snow()
with st.spinner("Training in progress"):
while not app.installed_deps:
logging.debug("waiting for deps installation to complete")
time.sleep(2)
# if not app.installed_deps: //FIXME:
# try:
# app.installation_queue.get(block=True, timeout=1*60)
# except Exception as e:
# logging.error(f"error {e}")
result = subprocess.run(
training_cmd,
cwd=app.work_dir,
capture_output=True,
encoding="UTF-8",
)
logging.info(result.stdout)
logging.error(result.stderr)
with open(os.path.join(app.work_dir, "stdout"), "w") as stdout, open(
os.path.join(app.work_dir, "stderr"),
"w",
) as stderr:
stdout.write(result.stdout)
stderr.write(result.stderr)
if result.stdout:
st.info(result.stdout)
if result.stderr:
st.warning(result.stderr)
if app.environment is JUPYTER_NOTEBOOK:
out = f"{app.training_script}.html"
if os.path.exists(
os.path.join(app.work_dir, f"{app.training_script}.html"),
):
app.exit_success = True
st.info(f"notebook: output generated at {out}")
logging.info(f"notebook: output generated at {out}")
else:
app.exit_success = False
st.error("notebook: execution failed")
logging.error("notebook: execution failed")
if not app.exit_success:
logging.critical(f"env:{app.environment}:failed")
st.error("app execution failed")
st.stop()
if app.venv_dir:
shutil.rmtree(app.venv_dir)
model_output = app.export_working_dir()
st.toast("Model Trained successfully!", icon="🧤")
st.success("Model Training Request completed successfully!", icon="✅")
st.balloons()
with open(model_output, "rb") as f1:
st.download_button(
label="Download Model",
data=f1,
file_name=f"decenter-model-{app.model_name}.zip",
key="download_model",
)
app.recycle_temp_dir()