Skip to content

Latest commit

 

History

History
100 lines (65 loc) · 2.75 KB

README.md

File metadata and controls

100 lines (65 loc) · 2.75 KB

Tests

ckanext-collection

Tools for building interfaces for data collections using declarative style.

This extension simplifies describing series of items, such as datasets from search page, users registered on portal, rows of CSV file, tables in DB, etc. Once you defined the way of fetching items from data source, you'll get generic interface for pagination, search and displaying data in any format: HTML page, CSV document, JSON list, or any other custom format that you can describe.

Read the documentation for a full user guide.

Quickstart

Install the extension

pip install ckanext-collection

Add collection to the ckan.plugins setting in your CKAN config file

Define the collection

from ckan import model
from ckanext.collection.shared import collection, data, columns, serialize


## collection of all resources from DB
class MyCollection(collection.Collection):
    DataFactory = data.ModelData.with_attributes(model=model.Resource)
    # `names` controls names of fields exported by serializer
    # further in this guide
    ColumnsFactory = columns.Columns.with_attributes(names=["name", "size"])

## collection of all packages available via search API
class MyCollection(collection.Collection):
    DataFactory = data.ApiSearchData.with_attributes(action="package_search")
    ColumnsFactory = columns.Columns.with_attributes(names=["name", "title"])

## collection of all records from CSV file
class MyCollection(collection.Collection):
    DataFactory = data.CsvFileData.with_attributes(source="/path/to/file.csv")
    ColumnsFactory = columns.Columns.with_attributes(names=["a", "b"])

Initialize collection object and work with data:

# collection with first page of results(1st-10th items)
col = MyCollection()
items = list(col)

# collection with third page of results(21st-30th items)
col = MyCollection("", {"page": 3})
items = list(col)


# alternatively, read all the items into memory at once, without pagination.
# It may be quite expensive operation depending on number of items
col = MyCollection()
items = list(col.data)

# or get the slice of data from 8th till 12th
items = list(col.data[8:12])

# check total number of items in collection
print(col.data.total)

Serialize data using Serializer service:

# JSON string
serializer = serialize.JsonSerializer(col)

# or CSV string
serializer = serialize.CsvSerializer(col)

# or python list of dictionaries
serializer = serialize.DictListSerializer(col)


print(serializer.serialize())

License

AGPL