-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMatr.nb
1119 lines (1092 loc) · 55.3 KB
/
Matr.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 56419, 1111]
NotebookOptionsPosition[ 55557, 1078]
NotebookOutlinePosition[ 55895, 1093]
CellTagsIndexPosition[ 55852, 1090]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"SetDirectory", "[",
RowBox[{"NotebookDirectory", "[", "]"}], "]"}], "\[IndentingNewLine]",
"\[IndentingNewLine]", "\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"data", "=", " ",
RowBox[{"Import", "[", "\"\<matr.dat\>\"", "]"}]}], ";"}],
"\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Show", "[",
RowBox[{"MatrixPlot", "[", "data", "]"}], " ", "]"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
"\[IndentingNewLine]"}], "\[IndentingNewLine]"}], "Input",
CellChangeTimes->{{3.7548879898391867`*^9, 3.754888019989835*^9}, {
3.75489030971663*^9, 3.754890309926835*^9}, {3.754890545607121*^9,
3.754890575580204*^9}, {3.754890736163905*^9, 3.754890759161602*^9}, {
3.754890798103757*^9, 3.754890871530962*^9}, {3.754891170428649*^9,
3.754891171968835*^9}, {3.754891220109755*^9, 3.754891272529356*^9}, {
3.754891604753474*^9, 3.7548916072187366`*^9}, {3.754891692233822*^9,
3.754891725212205*^9}, {3.7548918948252172`*^9, 3.754891933134817*^9},
3.75489198926303*^9, {3.754892181327607*^9, 3.754892220039163*^9}}],
Cell[BoxData["\<\"/home/darya/Method_of_calculation/LabaFifth\"\>"], "Output",
CellChangeTimes->{{3.754891702243984*^9, 3.75489172687645*^9},
3.754891934967248*^9, {3.75489220936423*^9, 3.754892221098467*^9}, {
3.754895123706626*^9, 3.754895139615871*^9}, {3.7548952446237793`*^9,
3.754895246981154*^9}, 3.7553553886358356`*^9, {3.7553555690127563`*^9,
3.755355571713847*^9}, {3.75535561003424*^9, 3.755355616433317*^9}, {
3.755355694089478*^9, 3.755355695697805*^9}, 3.755355838303591*^9,
3.7553559023899813`*^9, 3.7553571820666437`*^9, 3.756041354685286*^9, {
3.756044064146199*^9, 3.756044065583355*^9}, {3.756044174108554*^9,
3.756044175388055*^9}, {3.75604430453413*^9, 3.756044305791802*^9},
3.756044369264777*^9}],
Cell[BoxData[
GraphicsBox[RasterBox[CompressedData["
1:eJztmU8ow2EYx1dK/pWScXCQ0uLgSDm9RctJSUlNlphxwVWTHHbQmF1Qu2MH
rf0pDiQ7LBcUSojCbBO2n5z0uyjRrs/hqefxvq+2Wm1Pb7/f73k+3+fP+/6a
Rmf6x0ssFou18P35XeVvOLqqMUSX86bPu/kiEtcthr/sTpj+6PpEOC9CJ8MV
gcyzOKj3bodtl9rbIX9Pd0oXFqcNYY/XtT9Z38RSm7fVdvsIrsdeH1qfXel2
m/a8KO9MJ4PNWTEd3T8L+o7B9ReB6w7fQ05MhSbnN1xpce68X4st74HrLb+f
D5Hy1EZ6UreF/zB33fWA9QvLnSpu0HoqvlTx0UUP3Nyp6gP2+bF8If1g/eL2
l5svlb9QfYbs2Phj6zO2PmD9pdIDVT2UxR3LkYovNj6QDrm5c/dNKrvDFZs9
TBpibmhgLD2YE9XRLXO3MUPmL3f+Yu2yuHPPz9i8xnLH5i/2OlCeyqpvVHYo
zpCd2y/sfbH5i+372PqMzRfV+FLpAfIXus7m6lelu/ddJBzlkaoRQ8x8esz4
5Cuary79URfuEBeq+gDxxd4Xa1etz+qiB+76TMVLtTlWl77PPT9T9UfVOHLP
w7L6GnZ+5p4nZXHU5byLii/Vfo1qfqCKsy7nnFTn2Nx8Zc0Vqr3XkFWvZO2P
uLlzn1frwp3qPbhq+wtZ55Oqcaean1XTg2pzrCzu3HyLevgbPejCt6gH2jlB
d77/VQ/ccfgG9MhLoA==
"], {{0, 0}, {21, 21}}, {0, 1}],
Frame->True,
FrameLabel->{None, None},
FrameTicks->{{{{20.5,
FormBox["1", TraditionalForm]}, {16.5,
FormBox["5", TraditionalForm]}, {11.5,
FormBox["10", TraditionalForm]}, {6.5,
FormBox["15", TraditionalForm]}, {0.5,
FormBox["21", TraditionalForm]}}, {{20.5,
FormBox["1", TraditionalForm]}, {16.5,
FormBox["5", TraditionalForm]}, {11.5,
FormBox["10", TraditionalForm]}, {6.5,
FormBox["15", TraditionalForm]}, {0.5,
FormBox["21", TraditionalForm]}}}, {{{0.5,
FormBox["1", TraditionalForm]}, {4.5,
FormBox["5", TraditionalForm]}, {9.5,
FormBox["10", TraditionalForm]}, {14.5,
FormBox["15", TraditionalForm]}, {20.5,
FormBox["21", TraditionalForm]}}, {{0.5,
FormBox["1", TraditionalForm]}, {4.5,
FormBox["5", TraditionalForm]}, {9.5,
FormBox["10", TraditionalForm]}, {14.5,
FormBox["15", TraditionalForm]}, {20.5,
FormBox["21", TraditionalForm]}}}},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{
"AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic,
"DefaultPlotStyle" -> Automatic, "DomainPadding" -> Scaled[0.02],
"RangePadding" -> Scaled[0.05]}]], "Output",
CellChangeTimes->{{3.754891702243984*^9, 3.75489172687645*^9},
3.754891934967248*^9, {3.75489220936423*^9, 3.754892221098467*^9}, {
3.754895123706626*^9, 3.754895139615871*^9}, {3.7548952446237793`*^9,
3.754895246981154*^9}, 3.7553553886358356`*^9, {3.7553555690127563`*^9,
3.755355571713847*^9}, {3.75535561003424*^9, 3.755355616433317*^9}, {
3.755355694089478*^9, 3.755355695697805*^9}, 3.755355838303591*^9,
3.7553559023899813`*^9, 3.7553571820666437`*^9, 3.756041354685286*^9, {
3.756044064146199*^9, 3.756044065583355*^9}, {3.756044174108554*^9,
3.756044175388055*^9}, {3.75604430453413*^9, 3.756044305791802*^9},
3.75604436933113*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Show", "[",
RowBox[{
RowBox[{"MatrixPlot", "[", "data", "]"}], ",",
RowBox[{"ContourPlot", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"x1", "^", "2"}], "-", " ",
RowBox[{"x2", "^", "2"}], "-", "15"}], " ", "\[Equal]", " ", "0"}],
",",
RowBox[{"{",
RowBox[{"x1", ",", " ",
RowBox[{"-", "10"}], ",", " ", "10"}], "}"}], ",", " ",
RowBox[{"{",
RowBox[{"x2", ",",
RowBox[{"-", "10"}], ",", "10"}], "}"}]}], "]"}], ",", " ",
RowBox[{"ContourPlot", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"x1", "*", "x2"}], "+", "4"}], " ", "\[Equal]", "0"}], ",",
RowBox[{"{",
RowBox[{"x1", ",",
RowBox[{"-", "10"}], ",", "10"}], "}"}], ",",
RowBox[{"{",
RowBox[{"x2", ",",
RowBox[{"-", "10"}], ",", "10"}], "}"}]}], "]"}], ",",
RowBox[{"Axes", "\[Rule]", "Automatic"}]}], "]"}]], "Input",
CellChangeTimes->{
3.7548942488696823`*^9, {3.7548943167207203`*^9, 3.7548943219754057`*^9}, {
3.754894359535747*^9, 3.754894383629545*^9}, {3.754894413633935*^9,
3.754894421554926*^9}, {3.75489455723763*^9, 3.754894578744334*^9}, {
3.754895092889455*^9, 3.7548951008859873`*^9}}],
Cell[BoxData[
GraphicsBox[{RasterBox[CompressedData["
1:eJxTTMoPSmVmYGAQgWIQGwI+2D+sElnn/vCWPUzkR8/6qelr3tgvOx3L1ffk
mf0e8eZVa9Su2PP0SB+9JvTW3inuRkDzkhf2+69rvO3huD1kxM9sYatvz3tr
77pRzPSR6Cv7Lt1mTbVbDwadOLX8iyseh3q8D7b4Go330XikJH6pFf6kxvto
PNInHgcqf5Ea7wMVnlEpGyr2HX5rXx0dmvw4/LU9//qlP7bKP8EpPtjicbDV
mwMV76TGI7XinVrl5GCLX1L9S614p3U84hIfqHikdfzSuryidbwvmfyXO833
nf3+KM51PAlv7fO/Vf3YmPGS5HikdTuH1vE72NobuOKdWvl6sPX7qBW/g62d
Q6o51GrP4wo3WvdPB1u5OtjaOdQq56mV3oZr/FIrvqhVP5Ia76TaO1D9rJGW
T3GVq6Smn8HWfx9s+Xeg2jnUcg+1yvmnvc5pP1zf2HNaPj48Q+Wpfd76Xedn
dJ6yv9h33azz/mv73GUZtYtTHttfiLs3ZUP3TpzqSY33wZbfad3voFa7jlrt
eVLTw1DJv4OtnUnr+pHU/I4rX5PaPxps8TjYxtlwieMKf1qP0w7UOMZIG3/D
VX6SWs9SK96pld4GKh4HalyOWuqp5X5c8T7YxkWHevzSut4htf7FFe8AIIA/
OA==
"], {{0, 0}, {20, 20}}, {0, 1}], GraphicsComplexBox[CompressedData["
1:eJxdl3lwTXcUxyNS0eAtSV5eIi+S9zBMTVWGKJG6h6gljK0ztpryEH8YpK0l
lopWgo4hpho1bcfUdJnSBNVqar+HINNqQscyNNYgdrJZSqJ973e+v/vHy1xz
33Pv+53ld37fzzneaTljs8PDwsLqAv+Cd/nrRBsv5RRdyvFx63mnj7y7sCOV
zqkKXF522K45bP6O1Kcgs09BmZc3dBoWuDpS5brCLtu3evno37XO8JM+GqYe
eLnQOaIx9xcfXf1j1uLpEV7urB74qH7J2Jr4qym8/0rXwOWjKmUghdXjCPx+
UArXzvjtQOoKL54n877i2Jj54730PH/dkIbIZM4SO/RDnHd5RWEHri5pKuhT
nEINMcFPSdy7Q0Xy7IwUUm5u8LDEl0It1N3Dl2Vdqt+97/TdkYlsVnc7VF3c
gdbufLZm56L2nFdROKmgKYlU+KUJvPXs5nG5k5Lo/sjiftsfxnMXWZeSs58m
Zj9189Eebct6tPVQwip//Cq/mzMXt7uZVpSI/MVx282HozYfbk/tS04llJxy
8fuyLj0qz7tfnhfLvwffW5pA6t4vli80Dw5cCfSf+ovhbfnpW/PT48l+d4vt
7pZo3qnWdVN/lYdobsw+kL4swU1D1Xcn4nUjXifvFT/oUdI7LZeWO/jc5Iqz
kytcdHvWjppZO2w8f3TkgtGRLvKpuNrKfnwfS0UqgW1YaiSWRqn1X2XDW/nn
qE9jqG+34KdIHjcvbfy8tBjarey04mPjPwpc0XQomNduEdz5eb+Jr+dEU7OK
pyWvV+tGU6VKUEvOrFy2sMUuJw1W67fgYBbjVzlJ3fxhPFziogepaT/njmg2
0/NdgctJ/pWVU1dWNpldVp/4eJTNSR2U403mS2XHQXfV/YV5MWhnu4Pmqrw/
M78yzi/qtdxBu5S/T8xg9AtGO2iM+tBozg7+d28H9VZ2G8yGyMT1NXYHZarv
dabk14H81ppTlaN22t6QcbIh45aZzUGP7FSs1q8xr6g47fSl8u+GKefETiPV
/YJ5/PmpCcnt7fSNev+c+V6da0qdK/D+gKQzgcv8tT5Y2DbqFfXBuLyBJeah
LW/cbvPcRuLH+Qz9fHcb9dyYgt//Jb839PonZX0jC/aXiH1D+/eF+GfMhP9l
4r/hR3wnJD6jBeKPkviNRuRH6qPOmIv8ST02GK2R30mSX+Nr5P+g5N/Q+5Mr
+2NIXE6SfXxhdMX+vib7a+h6eCj1YExHvXikXmgQ6mmE1BNtQL1dlHqjLqjH
lspOBJWjXo9IvdIE1PM+qWci1PtbUu8Uch5oOM7LJjkv1O3gy+oZDhd1lfNE
ojcumlOd9bRVUTs6j/N3X84ffdtntKerLY70PujzWq4KyQF7btyd9ATnXeeh
FHog+Y6mn6AXDtELqoKeaL/3Qm/2it5QiB5RO+iVR/SK3oaeab+OQe8SRe8o
RA9pG/TygeglfQI91XYYelsoeksheoxzlYL98dCb0HNt5zr0/rHoPYXwgPaD
F03CC6oDT7SdLPAmS3hDB8AjqY8UCuEVaZ5dE57RMfBO2w3hITnBy77CS4oC
T/cIT0nztkh4q7+z/o73Wb+P9VivB3us7cEfi4vwl8FfcNDHtYgH8bKOF/xl
8Ffny+Ik+Mvgr8X575Bv8JcbsR/YL4uT4C+DvxbXH2K/wV8Gf3W9WJwEfxn8
tbjuQb2VST0y+Kvr1eJeG6lnTkQ9a67fR73vkfMg+Q6cB5wXi3vgL4O/0C03
j8F5a9zmbtjmdlucAn8Rr9PqA+4Jfwn85Vs4//+IPrAf+gD9YK0f4DF/Dn3R
fcEQ6A94zOnQJ+gXa/06LvomfU5A3zaKHvJN6CH0krVeThM9RT7DrL7iHPQW
esxaj6FL7FT3JqNK9JxzoOfTP3wlde8KB2u9l3gdnKrw9NgAfxn8NXKEHzwR
/ABfWPMF/EWfU2uIv3a+Az6BX6z5dWdTXuCy8wr1oca4IDrL14cK78BjBo+N
8u7rwp0eO2teThWecvhA4Sl4y92FxwZ4zCE85h2thdcDIoIr2nm1Wu+4CT7z
SfBd29P81/740B9of2vEX/M24pkj8eh+g3W/AV4zeG1Kvdj5kbo/0v0M635m
DvI9BP1OK+zHUPRDer96yn6Zfuyn7p/0fs9EfwV+czP6L/RnrPszXU9n0M+h
32MX+r2BqEfdD36Gej2PfhH9JOt+Ev0m70e/iX6UdT/aH+ejN/rVkPPDQ3G+
1qPfRT/Muh8+i/N6A/1yyHnGenG4O7geeqDjBJ/xPZq3Qk9s6OfR71t+lUKP
SjEPaL26h3khCnqWgHkC84bl1xHoYTzmkRC95B+hp/cwz2Desewcgh6vwTwU
otfwMxn3RD1vWXY0D+oxj4XwQs9z/C/mOcx7lp0QHul5kfW8GMIzPW/yFcyb
l9cu6lld4bPsYn5lPb9ivmU932r+6vn3f32Xu1Y=
"], {{}, {},
TagBox[
TooltipBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
LineBox[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68,
69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85,
86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101,
102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115,
116, 117, 118, 119, 120}],
LineBox[{121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146,
147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159,
160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173,
174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186,
187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200,
201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213,
214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227,
228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240,
241}]},
RowBox[{
RowBox[{
RowBox[{"-", "15"}], "+",
SuperscriptBox["x1", "2"], "-",
SuperscriptBox["x2", "2"]}], "\[Equal]", "0"}]],
Annotation[#, -15 + $CellContext`x1^2 - $CellContext`x2^2 == 0,
"Tooltip"]& ]}], GraphicsComplexBox[CompressedData["
1:eJxFVwtUVWUWRsErKMUbkgQRQcVpNCvK1pT/Nh3l4dAkTY3TmhnTXpr4AGON
KzPTnmojoNEywxhHlzo2C0tEyZy9Z3Q1Vo7apCIvCVP0AulVEeUqiy7/Pt/1
rHPXWeusc8/5/2/v/T2Gzpw/7fm+AQEBzb5f73W9PWpNgD1SJCtp2eC07Doz
PKswb9Nzw+TBw9MutdbUmU9mv7WN0oZJQnXx3dXF9SYls8R3JkvTgUcbfKd5
cZnrpWWuZHlv1quHF/+y0QTPG/1U47ahcrrRHsY+njJU9rtu5qcuO23+vitn
fcM/kqS0eOa+uo4ms/+1zIK2lCTJLtoatDjrB1Nflec7h8iYnRu//uvaH0za
kK+6v9icKGviC8p6tjWbVbl8vnRcgrQ/sTfxrbZmZz2D5fe1Cw5WjjhjSjsn
uf5/824paP7Sd/5orn8a3/lpfLysG+9eO979o8mzHxgk4RPmP+QJP2tqfvf1
/lV/HCQreg4OXv+nFrP0V4lZwW2x8uILvUeLscupj5W9GXlVGXktJmb7/2J9
pxyw91vMM/a5WGmJy1762dnzps7+IUZuVSR0VSS4zeSM3iNaNli83abHHlFy
/9iqi4Omt5ri3m0XRclgi2+bs59IOZo+9Y3Qre0ma0d+sut0hEz4dsHatMp2
s8iHwtiaCGmy8P5kMiy+EVLeJ953esy9PVfG9FwJk6kWT4+ptesJk/+45opr
rsdELYyIWxgRJo/b/102x+177pDlG2Ye9+y5bPb9ZuycG/Wh8pPF97JJtusJ
lTlbnvKdV8w607XWdA2U1RNmnDuWfNWE7Dq+z7t7gJRafK+aly2+IeKyfdVh
iu2+Q+SjnRuaHpMOU3crtu/k7cESF9N7XDNFdsPBQn8u7B5Vfs08UVaavmJH
f9k9rMd3XjN7SzL3lGT2l9kW505TaXF3yaPHEs/wqk7Tkfja4dJdLtlv73ea
GfY5l7htPa6bU3b//WTa65On5Lx/w/z33fQMz6kgSckOmz1zbpdJPZS7/JHU
INlo19llum19AmWR3UeXWWP3FSihhy4VPnbAa+bx6O1L7gqUJFuvmw4+fWWU
vd4yFyxufSTclfZ9huk21Z75SZGv9pGzFuduM9ni3kea7bp6TIatU4A0zzry
stvbY07olXP0Pp3Q53iq/o9q9T0s+l7qp99hj36XEnUdPFLXRXG6Tn5F102B
ug9er/uil3SfvOXzA8fPdQbSP2l83NbNXRxo6xdEpYoLOziRgxsfURwpU3Hl
04oznVHcea7WgT7TuvAtrROla934C60jzdK6slNncurO07UPaJz2BZdqn1Ck
9g2f0T6iEu0r/pv2GXlt/a7yQu1DKta+5EjtU3pb+5adPianrx28Qsmtfc9u
nQuaqHPCCTo39C+dIx6rc0bO3HG2ziHV61xy1bHNLYGnIqjfs42bvIXtPFzn
muJ1ztmZe3pAeYD7Wryj6UPlCc5W3qAO5REH3xgH3/Ocr7xDO5SHOF55iSqV
p7haeYueUx5jh9doufIcNyjvUajyIC9QXqQS5Ul2eJPylUf5Y+VVelJ5lkco
71Kr8jCvVF6mIuVpHq28TfcojzvrH0KZyvPs8D59qDrAW1QXaK/qBGepblCD
6giHqK6QozM8R3WHalWHOFV1ycG3nstUt+hh1TEeobpGU1Tn2NE9cnSQccV9
PIf/4T14L76D72IdWBfWiXVjH9gX9ol9AwfgApyAG3AErsAZuKMOqAvqhLqh
jqgr6oy6ow/QF+gT9A36CH11bckfnp63oIU3Pd72zR1Hbvch+hJ9ir7NLV8X
yoMu8HtFVTvbfx1DRxevGlq254Lz/WhyeeIa0se4Hd67PQeYi/Zzs6+Pv6+V
vfderEn9IIoePvnmdyOPtvK4wvPvSHiUf64wZ3fZaztftbhE0CHVU85RPaVJ
qqdcoHrqn1vM8YDW8jtbyy/yzZUVN1ZWhJPn2YaK7FGXuNHuJ5z+kjvAd3p4
0knvxJPeMKdeHm5SvaVfvJOwoiHfw7m9chod5ucR8MoS1Vs+qHrr5x3wEHgJ
PAXeAo+VOLwGnhtS37V0zpcdPDLyq++mbw2m3TMGVs0Y2MnjFk18aNHE/n6e
Be8+v+PfBUErO3nd6pyY6s9v8zR4+8j25KdPvn2DIzYO+23lids6AF2AjkBX
oDPQHegQdAk6Bd2CjkHXoHvQQb8uOjoJ3YSOQlehs9Bd6DB0GToN3YaOQ9eh
89B9+IAQ3bfUKA5+HwFfAZ8B37FacZQ8xdXvU+BbnDpIldbFJGmdZLjWze+T
4Jvgo+Cr4LPgu+DD4Mvg0+Db4Ovg8+D74APhC+ET4RvhI+Er4TPhO+FD4Uvh
U+Fb4WMf0LkUo3NqnLmVNp1jvw+GL9Z6R8udygPmXeUJeVJ5w++r4bPhu+HD
y5SHxKu85Pft8PHw9fD58P3IAcgFyAnIDcgRyBXIGcgdyCHIJcgpyC3IMcg1
yDnIPchByEXISchNyFHIVchZyF3IYchlyGnIbchxyHXIech9yIE/A6KhIa4=
"], {{}, {},
TagBox[
TooltipBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
LineBox[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68,
69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85,
86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101,
102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113}],
LineBox[{114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125,
126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139,
140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152,
153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166,
167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179,
180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193,
194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206,
207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220,
221, 222, 223, 224, 225}]},
RowBox[{
RowBox[{"4", "+",
RowBox[{"x1", " ", "x2"}]}], "\[Equal]", "0"}]],
Annotation[#, 4 + $CellContext`x1 $CellContext`x2 == 0, "Tooltip"]& ]}]},
Axes->Automatic,
Frame->True,
FrameLabel->{None, None},
FrameTicks->{{{{19.5,
FormBox["1", TraditionalForm]}, {15.5,
FormBox["5", TraditionalForm]}, {10.5,
FormBox["10", TraditionalForm]}, {5.5,
FormBox["15", TraditionalForm]}, {0.5,
FormBox["20", TraditionalForm]}}, {{19.5,
FormBox["1", TraditionalForm]}, {15.5,
FormBox["5", TraditionalForm]}, {10.5,
FormBox["10", TraditionalForm]}, {5.5,
FormBox["15", TraditionalForm]}, {0.5,
FormBox["20", TraditionalForm]}}}, {{{0.5,
FormBox["1", TraditionalForm]}, {4.5,
FormBox["5", TraditionalForm]}, {9.5,
FormBox["10", TraditionalForm]}, {14.5,
FormBox["15", TraditionalForm]}, {19.5,
FormBox["20", TraditionalForm]}}, {{0.5,
FormBox["1", TraditionalForm]}, {4.5,
FormBox["5", TraditionalForm]}, {9.5,
FormBox["10", TraditionalForm]}, {14.5,
FormBox["15", TraditionalForm]}, {19.5,
FormBox["20", TraditionalForm]}}}},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{
"AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic,
"DefaultPlotStyle" -> Automatic, "DomainPadding" -> Scaled[0.02],
"RangePadding" -> Scaled[0.05]}]], "Output",
CellChangeTimes->{
3.754893459329294*^9, 3.754894428781858*^9, {3.754894550527095*^9,
3.7548945817495747`*^9}, {3.754895102694248*^9, 3.754895132243775*^9},
3.754895258239069*^9}]
}, Open ]],
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"dataCoord", "=", " ",
RowBox[{"Import", "[", "\"\<coord.dat\>\"", "]"}]}], ";"}],
"\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"ticks", "=",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"1", ",", "\"\<-10\>\""}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "\"\<-8\>\""}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "\"\<-6\>\""}], "}"}], ",",
RowBox[{"{",
RowBox[{"4", ",", "\"\<-4\>\""}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "\"\<-2\>\""}], "}"}], ",",
RowBox[{"{",
RowBox[{"6", ",", "\"\<0\>\""}], "}"}], ",",
RowBox[{"{",
RowBox[{"7", ",", "\"\<2\>\""}], "}"}], ",",
RowBox[{"{",
RowBox[{"8", ",", "\"\<4\>\""}], "}"}], ",",
RowBox[{"{",
RowBox[{"9", ",", "\"\<6\>\""}], "}"}], ",",
RowBox[{"{",
RowBox[{"10", ",", "\"\<8\>\""}], "}"}], ",", " ",
RowBox[{"{",
RowBox[{"11", ",", "\"\<10\>\""}], "}"}]}], "}"}]}],
";"}], "\[IndentingNewLine]"}], "Input",
CellChangeTimes->{{3.75535848473139*^9, 3.7553584968348303`*^9},
3.756041350020029*^9, {3.7560414327356777`*^9, 3.756041441595254*^9}, {
3.7560418476311417`*^9, 3.7560419993864183`*^9}}],
Cell[BoxData[
RowBox[{"ListDensityPlot", "[",
RowBox[{"data", ",", " ",
RowBox[{"InterpolationOrder", "\[Rule]", "0"}], ",",
RowBox[{"Mesh", "\[Rule]", "None"}], ",",
RowBox[{"FrameTicks", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"ticks", ",", "None"}], "}"}], ",",
RowBox[{"{",
RowBox[{"ticks", ",", "None"}], "}"}]}], "}"}]}]}], "]"}]], "Input",
CellChangeTimes->{{3.756041289081689*^9, 3.7560412921314907`*^9}, {
3.756041330303924*^9, 3.7560413441860228`*^9}, {3.7560414493394003`*^9,
3.75604147440681*^9}, {3.756041585034526*^9, 3.7560416008411217`*^9}, {
3.756041819274132*^9, 3.756041820304413*^9}, 3.756041990476532*^9}],
Cell[BoxData[""], "Input",
CellChangeTimes->{3.7560417996423407`*^9, 3.756042148492824*^9}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Show", "[",
RowBox[{
RowBox[{"ListDensityPlot", "[",
RowBox[{"data", ",", " ",
RowBox[{"InterpolationOrder", "\[Rule]", "0"}], ",",
RowBox[{"Mesh", "\[Rule]", "None"}], ",",
RowBox[{"DataRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "10"}], ",", "10"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "10"}], ",", "10"}], "}"}]}], "}"}]}], ",",
RowBox[{"ColorFunction", "\[Rule]",
RowBox[{"(",
RowBox[{"ColorData", "[", "\"\<BlueGreenYellow\>\"", "]"}], ")"}]}]}],
"]"}], ",",
RowBox[{"ContourPlot", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"x1", "^", "2"}], "-", " ",
RowBox[{"x2", "^", "2"}], "-", "15"}], " ", "\[Equal]", " ", "0"}],
",",
RowBox[{"{",
RowBox[{"x1", ",", " ",
RowBox[{"-", "10"}], ",", " ", "10"}], "}"}], ",", " ",
RowBox[{"{",
RowBox[{"x2", ",",
RowBox[{"-", "10"}], ",", "10"}], "}"}], ",",
RowBox[{"ContourStyle", "\[Rule]", "Black"}]}], "]"}], ",", " ",
RowBox[{"ContourPlot", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"x1", "*", "x2"}], "+", "4"}], " ", "\[Equal]", "0"}], ",",
RowBox[{"{",
RowBox[{"x1", ",",
RowBox[{"-", "10"}], ",", "10"}], "}"}], ",",
RowBox[{"{",
RowBox[{"x2", ",",
RowBox[{"-", "10"}], ",", "10"}], "}"}], ",",
RowBox[{"ContourStyle", "\[Rule]", "Black"}]}], "]"}]}], "]"}]], "Input",\
CellChangeTimes->{{3.756042153814322*^9, 3.756042161486158*^9}, {
3.75604219718719*^9, 3.756042204574347*^9}, {3.756042449104268*^9,
3.7560424757743263`*^9}, 3.756042553714963*^9, {3.7560427897797413`*^9,
3.756042813161839*^9}, {3.756042905142058*^9, 3.756042949276581*^9}, {
3.75604301092553*^9, 3.756043106144463*^9}, {3.756043145164714*^9,
3.756043153433486*^9}, {3.756043238423263*^9, 3.756043296823412*^9}, {
3.756043381876626*^9, 3.756043428398671*^9}, {3.756043491904377*^9,
3.756043545967451*^9}, 3.756043594593316*^9}],
Cell[BoxData[
GraphicsBox[{GraphicsComplexBox[CompressedData["
1:eJyNnDGO69gRRYkJDIUKFHTQgSwo9B5aa/ASDDj2Eq0lzRIGg1ZdoE/r4BaT
hyOe/ziQyDuPxWL/8z//+/d//ziO41//OI6/x+/t/vw53oTtc/M4XuEb0x/+
hG9Mf/gDvjH94Qt8Y/rDZ/jG9IdP8I3pDx/wjekP//n/n74x/cx34HjC9DPf
F44nTD/zPXA8Yfr5PuEb08/vCd+Yfs4n+Mb0cz7DN6af6wm+Mf1cz/CN6SdH
4BvTT07Bv3P/HFe45Zvl1rV8bh7Hlm+f4g+3fPsQf7jl20X84ZZvZ/GHW76d
xB9u+TZMf7jl2zD9zHfgeML0M1/Jt2H6me+B4wnTz/cJ35h+fk/4xvRzPsE3
pp/zGb4x/VxP8I3p5zqGb0w/OQHfmH7yDP6d++e/W7jl1jaXtjlHbvlGj2PL
tw/xh1u+XcQfbvl2Fn+45dtJ/OGWb8P0h1u+DdPPfAeOJ0w/85V8G6af+R44
njD9fJ/wjenn94RvTD/nE3xj+jmf4RvTz3UE35h+rlP4xvSTJ/CN6SfP4N+5
/zW2+8Ltfaatq7brNMulbc6RW77R49jy7SL+cMu3s/jDLd9O4g+3fBumP9zy
bZh+5jtwPGH6ma/k2zD9zPfA8YTp5/uEb0w/vyd8Y/o5n+Ab0895DN+Yfq4T
+Mb0cz3DN6afPIFvTD95Bv/O/a+x1bW2dTK7L9zeZ9q6artOs1za5hy55Rs9
ji3fzuIPt3w7iT/c8m2Y/nDLt2H6me/A8YTpZ76Sb8P0M98DxxOmn+8TvjH9
/J7wjennPIJvTD/nKXxj+rme4BvTz/UM35h+8gS+Mf3kGfw797/GVpff1vmt
rrWtk9l94fY+09ZV23Wa5dI258gt3+hxbPl2En+45dsw/eGWb8P0M9+B4wnT
z3wl34bpZ74HjidMP98nfGP6+R3hG9PPeQLfmH7OZ/jG9HM9wTemn+sZvjH9
5Al8Y/rJM/h37n+N7bni9jml1eW3dX6ra23rZHZfuL3PtHXVdp1mubTNOXLL
N3ocW74N0x9u+TZMP/MdOJ4w/cxX8m2YfuZ74HjC9PM9wjemn98JvjH9nE/w
jennfIZvTD/XE3xj+rme4RvTT57AN6afPIN/5/7XeAi3fNs+V9w+p7S6/LbO
b3WtbZ3M7gu395m2rtqu0yyXtjlHbvlGj2PLt2H6mefA8YTpZ76Sb8P0M98D
xxOmn+8JvjH9/J7wjennfIJvTD/nM3xj+rme4BvTz/UM35h+8gS+Mf3kGfw7
97/G1tdl+bbti2j51urq2zq91aW2dS67r9veJ9q6aLvOslzZ5hS55RO9X//u
+Okb0888JZ+G6We+B44nTD/fJ3xj+vk94RvTz/kE35h+zmf4xvRzPcE3pp/r
F74x/eQBfGP6ySP4d+5/fT6b9ZVu+1StL2vb50Vu+bZ9Lrh9zmh19W2d3upS
Nd+O99xyZ5sr25z6lVvyuXm//l3Jp+TZ8Z5bPiXPjvfc8ukk/mwtn87iz9by
6SL+bC2fPsSfreXTp/iztXy6ij/bDb4x/dl+5RX3P1/7v95zy6dtX+hsxq2v
arbWp2V9CbO1Pgd7rjdbe05odfHZWp3d6kqztTqV3ZdlE27rotnaOstyybb8
OxlbPiXPvt5zy6fk2dd7bvmUPPt6zy2fkmdf77nlU/Ls6z23fEqefb3nlk/J
s6/3fINvTD95BP/O/c/Xjsd7bvm07Uvf9rmTWz5t+6K2fVbWV7DtU7Dnctvn
fFbX3tbJrS60rTPZfdn2Ps/WRdt1Frnlm+VW5pPPzePY8u0kfn5P+Jpvj/fc
8ulD/FwP8I3p53qEb0w/eQDfmH7yCP6d+5/fY3uvz/Jp+16M5dNVfPZZWj5t
+zJbH1Tra9r2SVlfwLbPwJ6rbZ/TWV16W+e2utC2zmT3Zdv7PHLLnW2ubHOK
3PKJHsczfGP6OZ/gG9PP+QzfmH6uJ/jG9HM9w7d8Own/yivuf36PZ+GWT9v3
8rbv+ZFbPm37wrd95tZXue3TtL6kbZ+TPdff9gnYc7HtczarS2/r3FYX2taZ
yC2fbF3DnNiukyxXtjlFbvlEj2PLp4v4OZ/hG9PP9QTfmH6uZ/jG9JMn8I3p
J8/g37n/+T1ehFu+bd8rtny7ij/c8m37Xovl27Yv3PJt21fZ+phaX9K2z8me
62/7BOy52vY5ndW1t3Vycss3qztxndPWUW1dtF1nWS5tc47c8o0ex5ZvH+Ln
eoJvTD/XM3xj+skT+Mb0k2fw79z//B4/hFu+bf8uguXbVXy+Z2f5tn0vz/Jt
+16L5dtFfPZJtj7M1le57dO0vqRtn5P1BWz7DOy53PY5H7nl27Yuta1z2X3d
9j7R1lXbdZrl0jbnyC3f6HFs+fYpfq5n+Mb0kyfwjeknz+Dfuf/587+b3PJt
+3ddLN+u4g+3fPsUn+/ZWb5t38uzfLuIzz5vy7ez+OyTbH2Yra9y26dpfU3b
PinrK9j2KZBbvm3r6ts6vdWltnUuuy/c3mfaumq7TrNc2uYcueUbPY4t367i
J0/gG9NPnsG/c//z53HJLd+2f5fK8u0qfr4H+Mb08z3DN6af/0/BN6afdT58
Y/qpk8Bv78lYX3jr46Sf52wl37Z9Uds+K3LLt+1zwe1zRnLLt21da1sns/vC
7X2mrau26zTLpW3OkVu+0eN4g29MP3kG/879z5//jtzybft39SzfruIPt3z7
FH+45duH+MMt3y7iD7d8O4s/3PJt+16L5du2r9zybdvXafk2G/3MV/Jt29ew
fY5ozxVbHZ/+cMu3bV1rWyez+8Ltfaatq7brNMulbc6R7XPzOP7KO+5//vyc
3PKNfxfU/k7orTD95DZ8Y/pZ98I3pp+6AXxj+qm7wjemn+dW8Nt7yvae3q1w
e0/mVrj1qd8Ktz7RW+HWp3Ur3PokboXbc8Zb4VanvxVuda5b4XafeCvc1lm3
wi2n2vgr1/TzvwB94OOv
"], {
{GrayLevel[0.8], EdgeForm[None],
GraphicsGroupBox[PolygonBox[CompressedData["
1:eJwl2WMQHUkbBtDYtm3btu1kk2xsb2wnm41t27a1STa2N8nGtvOdW9+PU13z
VFdN97wz3TP3Jm3SsVqHYEGCBPkzaJAgIbSaIIHj4EH+fxyVaEQnBiEJRWjC
EJZwhCcCEYlEZKIQk1jEJg4pSUVq0hCXeMQnAQlJRGKSkJRkJCcFdalHfRqQ
lnSkJwNZyUZ2cpCTXOQmD3nJR34KUJBCFKYIGclEZrJQklKUpgxlKUd5KlCR
SlSmClWpRnVqUJNa1KYOg1zgwQxhKL/JGtKIxjSnBS1pxR90pwc9aU0b2tKO
9nSgI53oTBe60o1e9KYPfRnF6EC9GUM/+jOAgYHxMZghDGUYwxnBSP5iLOMY
zwQmMonJTGEq05jOHOYyj/ksYCGLWMwSlrKM5cxgJrOYzQpWsorVbGAjm9jM
Frayje3sYCe72M0a1rKO9RSlGMUpwR72so/9HOAghzjMEY5yjOO84S3veM8/
nOYMZznHeS5wkUtc5gpXucZ1bnCTW9zmDnf5l3vc5wH/8ZBHPOYJT3nGc17w
kle85gMf+cRnErrHEpGYJPyQ/eQXgYc9KMEIHnj+CUkoQhOGL7p95RvfCSsL
R3giEJVoRCcGMYlFbOIQl3jEJwERiURkopCUZCQnBb87RxOa0oyUslSkJg2t
aUNb2lGQQhSmCHnJR34KkJFMZCYLWclGdnJQlGIUpwRlKUd5KlCRSlSmCn8b
0wlOcoqSslKUpgw5yUVu8lCValSnBjWpRW3qBJ5/GtKIxoH504SmNKM5LWhJ
K9rTgY504g+604OedKYLXelGXepRnwb0ojd96Es/+jOAgaQlHenJEKiXjSAS
kYlCVKIRnRj8pc9YxjGeOcxlHvOZwEQmMZkpTGUa05nBTGYxmwUsZBGL2cBG
NrGZJSxlGctZwUpWsZo1rGUd6/mPhzziMVvYyja2s4e97GM/BzjIIQ5zhKMc
43ig/pzgJKfYwU52sZtznOcCF7nEZa5wlWtc5wY3ucVt7nCXf7nHfR4witFB
/78/j+EJT3nGc97wlne8J6jNOxjBCcEH2Uc+8ZkvfOUb3/nBT34R2PhDEorQ
hCEmsYhNHMISjvBEICKRiEwUohKN6MQgLvGITwISkojEJCEpyUhOCtKSjvRk
ICOZyEwWspKN7OQgJalITRpykovc5KEghShMEYpSjOKUoCSlKE0Z8pKP/BTg
H9flNGc4S1lZOcpTgYpUojJVqEo1qlODfvRnAAOpSz3q04DfaEgjGvM7TWhK
M5rTgpa0ojVtaEs72hN4getIJzrTha504w+604Oe9KI3fejLIAYzhKGsYCWr
WM0oRvMnY/iLsYxjPBOYyCQmM4zhjGAkU5jKNKYzh7nMYz4LWMgiFrOEpSxj
OTOYySxms4a1rGN94HxqMpwRjAysF7KNbGIzH/jIJz7zNyc4ySmOcJRjHGcH
O9nFbvawl33sD9wPnOYMZ7nEZa5wlWtc5wY3qUktalOHc5znAhc5wEEOcZhb
3OYOd/mXe9znAU94yjOe84KXvOI1b3jLO97zha984ztBrdnBCE4Ifsh+8ovA
S/9/2oc84jEhZaEITRjCEo7wRGCLPlvZxvbAeNTgJa94TUx9YhGbOIT0ARGK
0IQhrSwd6clAQhKRmCQkJRnJSUFKUpGaNGQkE5nJQkEKUZgiZCUb2clBTnKR
mzzkJR/5KUBnutCVbhSlGMUpQVnKUZ4KVKQSlalCVapRnRrUpBa1qUNJSlGa
MvxGQxrRmN9pQlOa0ZwWtKQVrWlDW9rRng50pBMzfLTNZBaz+UPWnR70pB/9
GcDAwP7NWMYxnkEMZghDGcZwRjCSUYzmT8YwgYlMYjILWMgiFjOFqUxjemB8
zGQWs5nDXOYxnyUsZRnLWcFKVrGaNaxlHevZwla2sZ0d7GQXu9nDXvaxnw1s
ZBObOcBBDnGYvznBSU7xD6c5w1nOcZ4LXOQIRznGcepSj/o04BKXucJVrnGd
G9zkFre5w13Cqlk4whOB/2QPecRjnvCUZzznBS95xWve8JZ3vOcDH/nEZ77w
lW985wc/+UXggz8owQhOCEISitCEISKRiEwUcpKL3OQhJrGITRziEo/4JCAh
iUhMEqISjejEICnJSE4K0pKO9GQgI5nITBayko3s5CAlqUhNGvKSj/wUoJd5
9qYPfSkoK0RhijCIwQxhKDWpRW3qUJVqVKcGJSlFacpQlnKUpwJ1qUd9GvA7
TWhKM5rTgpa04l9jusd9HvCbrCGNaExFKlGZKrSmDW1pR3s60JFOgeef7vSg
Z2D+9KYPfelHfwYwkGEMZwQj+YuxjGM8oxjNn4yhM13oSjcmMJFJTGYKU5nG
dIpSjOKUCNQrlHqRmjTENed4xCdBYD3QZynLWM4WtrKN7axgJatYzRrWso71
bGAjm9jMDnayi938zQlOcoo97GUf+znAQQ5xmCMc5RjH+cFPfhH4cewf7WnO
cJZLXOYKV7nGdW5wk1vc5g53A/XnHvd5wDnOc4GLPOEpz3jOC17yite84S3v
eM8HPvKJz3zhK9/4zgIWsojFBDWHYAQnBGEJR3giEJd4xCcBEYlEZKIQlWhE
JwYxiUVs4pCQRCQmCRnJRGaykJRkJCcFKUlFatIE3hdIR3oykJVsZCcHOclF
bvKQl3zkpwBFKUZxSlCSUpSmDGUpR3kqUJBCFKYIFalEZapQk1rUpg51qUd9
GvAbDWlEY6pSjerU4D/X/CGPeMzvsiY0pRnNaUFLWtGaNrSlHVOYyjSm05ku
dKUbf9CdHvSkF73pQ1/60Z8BDGQQgxnCUIYxnBGMZBSj+ZMx/MVYxjGeCUxk
EpOZwUxmMZsDHOQQh1nAQhaxmCUsZRnLWcFKVrGaOcxlHvNZw1rWsZ4tbGUb
29nBTnaxmz3sZR/72cBGNrGZIxzlGMcD51OTucxjfmC9kJ3gJKeIaM2KRGSi
8K/sHvd5wC1uc4e7nOM8F7jIJS5zhauB+4GHPOIxL3jJK17zhre84z3t6UBH
OvGEpzzjOde4zg1u8oGPfOIzX/jKN74T1ByCEZwQhCQUoQlDWMIRnghEJRrR
iRFYv4lHfBIQk1jEJg4/nOMnvwj8kZCQRCQmCUlJRnJS8I9+pznDWdLK0pGe
DPwPQ9gTXg==
"]]]}, {}, {}, {}, {}},
VertexColors->CompressedData["
1:eJzt271LlWEYx/EHJQeXQwfUFsneiKJB7cVB6oqGhkPRIaihWjSiwSKNQBcx
DuXSZIGThEMNbUYYJnUs0sIlkMjsxVQUyUrOEIbSYP4PPY9+7/v+TcJnO3jd
9/d6PD7bGq+dvlQURdG+kigqXvuZGu2ou7drzPYW9Xwb+Ttvqf6rWza9mjK5
H363tOdKcesbGyht7G2amrPzO3ItzQvTcrlcLt9gp/VCrv7K5XJ5CP7l4v6x
mpoJ6+7a2n199rv1VxX65m5Pxua0HoXmtHmTx+svPq4WjrS/tMXXHy6MLszY
zQezI5WZGfk6OW0e5G65+uu30+YtNKf1Qu6W0+ZZ7lZ/1Xf1l+y0+1YuV3/D
cVpPaU7rKc1p86z+xuvvqldr95wasHQh8/VG2aTtfrt858CJ+Jz2eWlOOy/y
eP3c2aWTS0PT9id76Ohwww/73dmbql/+7IzTeh1a32nzTHPX+1h/Jn9557Eh
e/S04WC6LWett97nKto/xebqu/pL9qTvT1pPaU7rtfrOPKd6vparv/71MWkv
aX7S9rhv3jJdTSt1939atjyfH3844Yxnh7d3Vh5ftIp09eDzZ7/s8ODm8rKW
8dhcfd/YvtPOu/qrvvjktB7RnPY8KI/Xk95PXN8faOcxtP3BdafNgzxepz2P
yOU+OW1fou0ncnnITtsH5Hp+8clp80Dbz/X3Gfn/OO28hOa0+zY0p30fR3Pa
74u2P9CeR2j7Q9L/H5L0fkLrBc1p553mtPtc7pbT5pnWX/Xd7+8vaPOgPrrl
tPtc71e69X4lbZ5pTrtv1Xe3+kubZ7n661PfaZ+X5rTzElp/1Xe93ydXf+Vh
Ou280JzWU5qrv3Ky0+5buVtOm+fQnNa70Jw2D3K5+s5x2jzI1V+fnDYPcrlc
Lld/Q/B/40iHGg==
"]], GraphicsComplexBox[CompressedData["
1:eJxdl3lwTXcUxyNS0eAtSV5eIi+S9zBMTVWGKJG6h6gljK0ztpryEH8YpK0l
lopWgo4hpho1bcfUdJnSBNVqar+HINNqQscyNNYgdrJZSqJ973e+v/vHy1xz
33Pv+53ld37fzzneaTljs8PDwsLqAv+Cd/nrRBsv5RRdyvFx63mnj7y7sCOV
zqkKXF522K45bP6O1Kcgs09BmZc3dBoWuDpS5brCLtu3evno37XO8JM+GqYe
eLnQOaIx9xcfXf1j1uLpEV7urB74qH7J2Jr4qym8/0rXwOWjKmUghdXjCPx+
UArXzvjtQOoKL54n877i2Jj54730PH/dkIbIZM4SO/RDnHd5RWEHri5pKuhT
nEINMcFPSdy7Q0Xy7IwUUm5u8LDEl0It1N3Dl2Vdqt+97/TdkYlsVnc7VF3c
gdbufLZm56L2nFdROKmgKYlU+KUJvPXs5nG5k5Lo/sjiftsfxnMXWZeSs58m
Zj9189Eebct6tPVQwip//Cq/mzMXt7uZVpSI/MVx282HozYfbk/tS04llJxy
8fuyLj0qz7tfnhfLvwffW5pA6t4vli80Dw5cCfSf+ovhbfnpW/PT48l+d4vt
7pZo3qnWdVN/lYdobsw+kL4swU1D1Xcn4nUjXifvFT/oUdI7LZeWO/jc5Iqz
kytcdHvWjppZO2w8f3TkgtGRLvKpuNrKfnwfS0UqgW1YaiSWRqn1X2XDW/nn
qE9jqG+34KdIHjcvbfy8tBjarey04mPjPwpc0XQomNduEdz5eb+Jr+dEU7OK
pyWvV+tGU6VKUEvOrFy2sMUuJw1W67fgYBbjVzlJ3fxhPFziogepaT/njmg2
0/NdgctJ/pWVU1dWNpldVp/4eJTNSR2U403mS2XHQXfV/YV5MWhnu4Pmqrw/
M78yzi/qtdxBu5S/T8xg9AtGO2iM+tBozg7+d28H9VZ2G8yGyMT1NXYHZarv
dabk14H81ppTlaN22t6QcbIh45aZzUGP7FSs1q8xr6g47fSl8u+GKefETiPV
/YJ5/PmpCcnt7fSNev+c+V6da0qdK/D+gKQzgcv8tT5Y2DbqFfXBuLyBJeah
LW/cbvPcRuLH+Qz9fHcb9dyYgt//Jb839PonZX0jC/aXiH1D+/eF+GfMhP9l
4r/hR3wnJD6jBeKPkviNRuRH6qPOmIv8ST02GK2R30mSX+Nr5P+g5N/Q+5Mr
+2NIXE6SfXxhdMX+vib7a+h6eCj1YExHvXikXmgQ6mmE1BNtQL1dlHqjLqjH
lspOBJWjXo9IvdIE1PM+qWci1PtbUu8Uch5oOM7LJjkv1O3gy+oZDhd1lfNE
ojcumlOd9bRVUTs6j/N3X84ffdtntKerLY70PujzWq4KyQF7btyd9ATnXeeh
FHog+Y6mn6AXDtELqoKeaL/3Qm/2it5QiB5RO+iVR/SK3oaeab+OQe8SRe8o
RA9pG/TygeglfQI91XYYelsoeksheoxzlYL98dCb0HNt5zr0/rHoPYXwgPaD
F03CC6oDT7SdLPAmS3hDB8AjqY8UCuEVaZ5dE57RMfBO2w3hITnBy77CS4oC
T/cIT0nztkh4q7+z/o73Wb+P9VivB3us7cEfi4vwl8FfcNDHtYgH8bKOF/xl
8Ffny+Ik+Mvgr8X575Bv8JcbsR/YL4uT4C+DvxbXH2K/wV8Gf3W9WJwEfxn8
tbjuQb2VST0y+Kvr1eJeG6lnTkQ9a67fR73vkfMg+Q6cB5wXi3vgL4O/0C03
j8F5a9zmbtjmdlucAn8Rr9PqA+4Jfwn85Vs4//+IPrAf+gD9YK0f4DF/Dn3R
fcEQ6A94zOnQJ+gXa/06LvomfU5A3zaKHvJN6CH0krVeThM9RT7DrL7iHPQW
esxaj6FL7FT3JqNK9JxzoOfTP3wlde8KB2u9l3gdnKrw9NgAfxn8NXKEHzwR
/ABfWPMF/EWfU2uIv3a+Az6BX6z5dWdTXuCy8wr1oca4IDrL14cK78BjBo+N
8u7rwp0eO2teThWecvhA4Sl4y92FxwZ4zCE85h2thdcDIoIr2nm1Wu+4CT7z
SfBd29P81/740B9of2vEX/M24pkj8eh+g3W/AV4zeG1Kvdj5kbo/0v0M635m
DvI9BP1OK+zHUPRDer96yn6Zfuyn7p/0fs9EfwV+czP6L/RnrPszXU9n0M+h
32MX+r2BqEfdD36Gej2PfhH9JOt+Ev0m70e/iX6UdT/aH+ejN/rVkPPDQ3G+
1qPfRT/Muh8+i/N6A/1yyHnGenG4O7geeqDjBJ/xPZq3Qk9s6OfR71t+lUKP
SjEPaL26h3khCnqWgHkC84bl1xHoYTzmkRC95B+hp/cwz2Desewcgh6vwTwU
otfwMxn3RD1vWXY0D+oxj4XwQs9z/C/mOcx7lp0QHul5kfW8GMIzPW/yFcyb
l9cu6lld4bPsYn5lPb9ivmU932r+6vn3f32Xu1Y=
"], {{}, {},
TagBox[
TooltipBox[
{GrayLevel[0], AbsoluteThickness[1.6],
LineBox[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68,
69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85,
86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101,
102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115,
116, 117, 118, 119, 120}],
LineBox[{121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146,
147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159,
160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173,
174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186,
187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200,
201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213,
214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227,
228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240,
241}]},
RowBox[{
RowBox[{
RowBox[{"-", "15"}], "+",
SuperscriptBox["x1", "2"], "-",
SuperscriptBox["x2", "2"]}], "\[Equal]", "0"}]],
Annotation[#, -15 + $CellContext`x1^2 - $CellContext`x2^2 == 0,
"Tooltip"]& ]}], GraphicsComplexBox[CompressedData["
1:eJxFVwtUVWUWRsErKMUbkgQRQcVpNCvK1pT/Nh3l4dAkTY3TmhnTXpr4AGON
KzPTnmojoNEywxhHlzo2C0tEyZy9Z3Q1Vo7apCIvCVP0AulVEeUqiy7/Pt/1
rHPXWeusc8/5/2/v/T2Gzpw/7fm+AQEBzb5f73W9PWpNgD1SJCtp2eC07Doz
PKswb9Nzw+TBw9MutdbUmU9mv7WN0oZJQnXx3dXF9SYls8R3JkvTgUcbfKd5
cZnrpWWuZHlv1quHF/+y0QTPG/1U47ahcrrRHsY+njJU9rtu5qcuO23+vitn
fcM/kqS0eOa+uo4ms/+1zIK2lCTJLtoatDjrB1Nflec7h8iYnRu//uvaH0za
kK+6v9icKGviC8p6tjWbVbl8vnRcgrQ/sTfxrbZmZz2D5fe1Cw5WjjhjSjsn
uf5/824paP7Sd/5orn8a3/lpfLysG+9eO979o8mzHxgk4RPmP+QJP2tqfvf1
/lV/HCQreg4OXv+nFrP0V4lZwW2x8uILvUeLscupj5W9GXlVGXktJmb7/2J9
pxyw91vMM/a5WGmJy1762dnzps7+IUZuVSR0VSS4zeSM3iNaNli83abHHlFy
/9iqi4Omt5ri3m0XRclgi2+bs59IOZo+9Y3Qre0ma0d+sut0hEz4dsHatMp2
s8iHwtiaCGmy8P5kMiy+EVLeJ953esy9PVfG9FwJk6kWT4+ptesJk/+45opr
rsdELYyIWxgRJo/b/102x+177pDlG2Ye9+y5bPb9ZuycG/Wh8pPF97JJtusJ
lTlbnvKdV8w607XWdA2U1RNmnDuWfNWE7Dq+z7t7gJRafK+aly2+IeKyfdVh
iu2+Q+SjnRuaHpMOU3crtu/k7cESF9N7XDNFdsPBQn8u7B5Vfs08UVaavmJH
f9k9rMd3XjN7SzL3lGT2l9kW505TaXF3yaPHEs/wqk7Tkfja4dJdLtlv73ea
GfY5l7htPa6bU3b//WTa65On5Lx/w/z33fQMz6kgSckOmz1zbpdJPZS7/JHU
INlo19llum19AmWR3UeXWWP3FSihhy4VPnbAa+bx6O1L7gqUJFuvmw4+fWWU
vd4yFyxufSTclfZ9huk21Z75SZGv9pGzFuduM9ni3kea7bp6TIatU4A0zzry
stvbY07olXP0Pp3Q53iq/o9q9T0s+l7qp99hj36XEnUdPFLXRXG6Tn5F102B
ug9er/uil3SfvOXzA8fPdQbSP2l83NbNXRxo6xdEpYoLOziRgxsfURwpU3Hl
04oznVHcea7WgT7TuvAtrROla934C60jzdK6slNncurO07UPaJz2BZdqn1Ck
9g2f0T6iEu0r/pv2GXlt/a7yQu1DKta+5EjtU3pb+5adPianrx28Qsmtfc9u
nQuaqHPCCTo39C+dIx6rc0bO3HG2ziHV61xy1bHNLYGnIqjfs42bvIXtPFzn
muJ1ztmZe3pAeYD7Wryj6UPlCc5W3qAO5REH3xgH3/Ocr7xDO5SHOF55iSqV
p7haeYueUx5jh9doufIcNyjvUajyIC9QXqQS5Ul2eJPylUf5Y+VVelJ5lkco
71Kr8jCvVF6mIuVpHq28TfcojzvrH0KZyvPs8D59qDrAW1QXaK/qBGepblCD
6giHqK6QozM8R3WHalWHOFV1ycG3nstUt+hh1TEeobpGU1Tn2NE9cnSQccV9
PIf/4T14L76D72IdWBfWiXVjH9gX9ol9AwfgApyAG3AErsAZuKMOqAvqhLqh
jqgr6oy6ow/QF+gT9A36CH11bckfnp63oIU3Pd72zR1Hbvch+hJ9ir7NLV8X
yoMu8HtFVTvbfx1DRxevGlq254Lz/WhyeeIa0se4Hd67PQeYi/Zzs6+Pv6+V
vfderEn9IIoePvnmdyOPtvK4wvPvSHiUf64wZ3fZaztftbhE0CHVU85RPaVJ
qqdcoHrqn1vM8YDW8jtbyy/yzZUVN1ZWhJPn2YaK7FGXuNHuJ5z+kjvAd3p4
0knvxJPeMKdeHm5SvaVfvJOwoiHfw7m9chod5ucR8MoS1Vs+qHrr5x3wEHgJ
PAXeAo+VOLwGnhtS37V0zpcdPDLyq++mbw2m3TMGVs0Y2MnjFk18aNHE/n6e
Be8+v+PfBUErO3nd6pyY6s9v8zR4+8j25KdPvn2DIzYO+23lids6AF2AjkBX
oDPQHegQdAk6Bd2CjkHXoHvQQb8uOjoJ3YSOQlehs9Bd6DB0GToN3YaOQ9eh
89B9+IAQ3bfUKA5+HwFfAZ8B37FacZQ8xdXvU+BbnDpIldbFJGmdZLjWze+T
4Jvgo+Cr4LPgu+DD4Mvg0+Db4Ovg8+D74APhC+ET4RvhI+Er4TPhO+FD4Uvh
U+Fb4WMf0LkUo3NqnLmVNp1jvw+GL9Z6R8udygPmXeUJeVJ5w++r4bPhu+HD
y5SHxKu85Pft8PHw9fD58P3IAcgFyAnIDcgRyBXIGcgdyCHIJcgpyC3IMcg1
yDnIPchByEXISchNyFHIVchZyF3IYchlyGnIbchxyHXIech9yIE/A6KhIa4=
"], {{}, {},
TagBox[
TooltipBox[
{GrayLevel[0], AbsoluteThickness[1.6],
LineBox[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68,
69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85,
86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101,
102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113}],
LineBox[{114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125,
126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139,
140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152,
153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166,
167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179,
180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193,
194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206,
207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220,
221, 222, 223, 224, 225}]},
RowBox[{
RowBox[{"4", "+",
RowBox[{"x1", " ", "x2"}]}], "\[Equal]", "0"}]],
Annotation[#, 4 + $CellContext`x1 $CellContext`x2 == 0, "Tooltip"]& ]}]},
AspectRatio->1,
DisplayFunction->Identity,
Frame->True,
FrameLabel->{None, None},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultColorFunction" ->
"M10DefaultDensityGradient"},
PlotRange->{{-10., 10.}, {-10., 10.}},
PlotRangeClipping->True,
PlotRangePadding->{
Scaled[0.02],
Scaled[0.02]},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{
3.756043108294036*^9, 3.756043155520782*^9, {3.756043251478189*^9,
3.756043299276424*^9}, 3.7560433838383303`*^9, {3.7560434669808187`*^9,
3.7560434966341753`*^9}, {3.756043582665915*^9, 3.7560435967488937`*^9},
3.756044073162483*^9, 3.756044178589486*^9}]
}, Open ]],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.756043338527207*^9, 3.756043339271035*^9}, {
3.756043374811036*^9, 3.756043387814743*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Show", "[",
RowBox[{
RowBox[{"ListDensityPlot", "[",
RowBox[{"data", ",", " ",
RowBox[{"InterpolationOrder", "\[Rule]", "0"}], ",",
RowBox[{"Mesh", "\[Rule]", "None"}], ",",
RowBox[{"DataRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "10"}], ",", "10"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "10"}], ",", "10"}], "}"}]}], "}"}]}], ",",
RowBox[{"ColorFunction", "\[Rule]",
RowBox[{"(",
RowBox[{"ColorData", "[", "\"\<BlueGreenYellow\>\"", "]"}], ")"}]}]}],
"]"}], ",",
RowBox[{"ContourPlot", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"x1", "^", "2"}], "+", " ",
RowBox[{"x2", "^", "2"}], "+", " ", "x1", " ", "+", " ", "x2", " ",
"-", "8"}], " ", "\[Equal]", " ", "0"}], ",",
RowBox[{"{",
RowBox[{"x1", ",", " ",
RowBox[{"-", "10"}], ",", " ", "10"}], "}"}], ",", " ",
RowBox[{"{",
RowBox[{"x2", ",",
RowBox[{"-", "10"}], ",", "10"}], "}"}], ",",
RowBox[{"ContourStyle", "\[Rule]", "Black"}]}], "]"}], ",", " ",
RowBox[{"ContourPlot", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"x1", "^", "2"}], "+", " ",
RowBox[{"x2", "^", "2"}], "+", " ",
RowBox[{"x1", " ", "*", " ", "x2"}], " ", "-", " ", "7"}], " ",
"\[Equal]", "0"}], ",",
RowBox[{"{",
RowBox[{"x1", ",",
RowBox[{"-", "10"}], ",", "10"}], "}"}], ",",
RowBox[{"{",
RowBox[{"x2", ",",
RowBox[{"-", "10"}], ",", "10"}], "}"}], ",",
RowBox[{"ContourStyle", "\[Rule]", "Black"}]}], "]"}]}], "]"}]], "Input",\
CellChangeTimes->{{3.7560436366299973`*^9, 3.756043650129767*^9}, {
3.7560437241019087`*^9, 3.7560437479126053`*^9}}],
Cell[BoxData[
GraphicsBox[{GraphicsComplexBox[CompressedData["
1:eJyNnDGOI8kVBQkBC7RJg0YbbVBE3YM8wx5BwNp7xOWR1tABBKH5n9AxDL1f
TiKmYrIGZNWbzJ9Z/Oe//vz9j3+cTqd//3Y6/bf9Po7nd3sr7fX50zemP/wF
35j+8Cd8Y/rDF/jG9IfP8I3pD3/AN6Y/fIJvTH/4779++sb0098J1xOmn/7u
uJ4w/fT3wPWE6efzhG9MP98nfGP6uZ/gG9PP/QzfmH6eJ/jG9PM8wzemnxyB
b0x/+IB/8PxcV3ibb9a2fPoSf7jl06f4wy2fLuIPt3w6iz/c8ulD/OGWT8P0
h1s+DdNPfydcT5h++iv5NEw//T1wPWH6+TzhG9PP9wnfmH7uJ/jG9HM/wzem
n+cJvjH9PMfwjeknP+Ab008ewT94fv7dwjausnGW5VLLN2tbPn2KP9zy6SL+
cMuns/jDLZ8+xB9u+TRMf7jl0zD99HfC9YTpp7+ST8P0098D1xOmn88TvjH9
fJ/wjennfoJvTD/3M3xj+nmO4BvTz/ML35h+8gC+Mf3kEfyD519tm5dt53k2
LtqOsyyXWr5Z2/LpIv5wy6ez+MMtnz7EH275NEx/uOXTMP30d8L1hOmnv5JP
w/TT3wPXE6afzxO+Mf18n/CN6ed+gm9MP/cxfGP6eX7gG9PP8wjfmH7yAL4x
/eQR/IPnX22rC23rTDYv287zbFy0HWdZLm1zjtzyjR7blm9n8Ydbvn2IP9zy
bZj+cMu3Yfrp74TrCdNPfyXfhumnvweuJ0w/nyd8Y/r5PuEb0899BN+Yfu5T
+Mb08zzBN6af5xm+Mf3kCXxj+skz+AfPv9pW197Wya2utK1T2bxuO0+0cdV2
nGa51PLN2pZPH+IPt3wapj/c8mmYfvo74XrC9NNfyadh+unvgesJ08/nCd+Y
fr5H+Mb0c//AN6af+xG+Mf08D/CN6ed5hG9MP3kA35h+8gj+wfOvtq2rbdfp
rK69rZNbXWlbp7J53XaeaOOi7TjLcqnlm7Utn4bpD7d8Gqaf/k64njD99Ffy
aZh++nvgesL08znCN6af7w++Mf3cD/CN6ed+hG9MP88DfGP6eR7hG9NPHsA3
pp88gn/w/Ks9Cbd82q6rbdfprK69rZNbXWlbp7J52XaeZ+Oi7TjLcqnlm7Ut
n4bpp58TridMP/2VfBqmn/4euJ4w/Xx+8I3p5/uAb0w/9wN8Y/q5H+Eb08/z
AN+Yfp5H+Mb0kwfwjeknj+AfPP9q274iy6ftun5bh2vratt1Oqtrb+vkVhfa
1plsXrad59m4aDvOslxq+WZtjuf/Z/rpp+TTMP3098D1hOnn84BvTD/fB3xj
+rkf4BvTz/0I35h+ngf4xvTzPMI3pp88gG9MP3kE/+D515/PYfsat/skbV/R
dp8SueXTdl1tu05ndeltndvqQts6k83LtvM8Gxdtx1mWSzXf5Gj5lDw7veeW
T8mz03tu+fQh/hwtn87iz9Hy6SL+HC2fPsWfo+XTl/hztHy6ij/HDb4x/Tl+
ySuef77O399zy6ftvsY5jNu+ojnaPiVb15+j7ROwdbE52jqb1aXnaHVuqwvN
0epMNi/LIdzGRXO0cZblkh35e9K2fEqe3d9zy6fk2f09t3xKnt3fc8un5Nn9
Pbd8Sp7d33PLp+TZ/T23fEqe3d/zDb4x/eQR/IPnn68Tj/fc8mm7r3q7T5vc
8mm7r2i7T8nW5bfr/LYutl1ns7r0ts5tdaFtncnmZdt5no2LtuMs8jrfpG35
9CF+vg/4xvRzP8A3pp/7Eb4x/TwP8I3p53mEb0w/eQDfmH7yCP7B88/vtr1X
Zvm0fa/D8ukqPvcpWj5t9zW2fURtX9B2n5Gty2/X+W1dbLvOZnXpbZ3b6kLb
OpPNy7bzPLKNq2ycZbnU8s3alk9n8XM/wDemn/sRvjH9PA/wjenneYRvTD95
AN+YfvII/sHzz+/2LNzyafte2fY9NXLLp+2+6u0+bduXuN3naPuCtvuMbF1+
u85v62LbdTarS2/r3FYX2taZyC2ftuOi7TjLcqnlm7Utny7i536Eb0w/zwN8
Y/p5HuEb008ewDemnzyCf/D887u9CLd82r7Xavl0FX+45dP2vQ7Lp+2+6LaP
se1L3O5ztH1B231Gti6/Xee3dbHtOpvVpbd1bnLLp+28bDvPs3HRdpxludTy
zdqWT5/i53mAb0w/zyN8Y/rJA/jG9JNH8A+ef363n8Itn7bv1Vs+XcXne2KW
T9v3yiyftu9lWD5dxOc+w7aPse1L3O5ztH1B231Gti6/Xee3dbHtOhu55dO2
LrStM9m8bDvPs3HRdpxludTyzdqWT1/i53mEb0w/eQDfmH7yCP7B88+f/25y
y6ft73pYPl3FH2759CU+3/OyfNq+F2b5dBGf+5zbPuq2L3q7z9r2JW73Odq+
oO0+I1uX367zk1s+bevS2zq31YW2dSabl23neTYu2o6zLJdavlnb8ukqfvIA
vjH95BH8g+efP69Lbvm0/V0hy6er+Pkc4BvTz+cM35h+/p+Bb0w/42z4xvRT
Z4Df3vOwfdFtHyP9rDOVfNruC9ruMyK3fNqui23X2awuva1zW11oW2eyedl2
nmfjou04y3Kp5Zu1N/jG9JNH8A+ef/78e+SWT9vfNbN8uoo/3PLpS/zhlk+f
4g+3fLqIP9zy6Sz+cMun7XsZlk/bfdGWT9t9iZZPc9BPfyWftuvybR2N/nDL
p21delvntrrQts5k87LtPM/GRdtxluVSyzdrf8krnn/+/HNyyyf+rqL9zuKt
MP3kLnxj+hl3wjemn3k3fGP6qTvCN6afdRf47T1Xe0/sVri9p3Er3PZJ3wq3
fYq3wm2f0K1wW6e/FW7rZLfCrU59K9zqRLfCbZ52K9zGSbfCLaf+1/4HsEmf
UA==
"], {
{GrayLevel[0.8], EdgeForm[None],
GraphicsGroupBox[PolygonBox[CompressedData["
1:eJwl2GPQIDmjBtCxbdu2bdu2bdu2bdu2bdvWzu5gd+557/fjVKqfSlLpTqc7
3YmbdKzSIUigQIH6Bw4UKJhSESjgOGig/x2HJgxhCUdwQhCSUKQmDWlJR2Si
EJVoxCYOcYlHeCIQkUgkJglJSUZ0YhCTWCQnBSlJRXoykJFMVKcGNalFZrKQ
lWxkJwc5yUVu8pCXfMQnAQlJRGGKUJRiFKcEJSlFacpQlnKUpwIVqURlqlCV
anR2QbvQlW7UltWhLvVoTBOa0ozmtKAlrWhNG9rSjvZ0oCOdGM4IRjKK0Yxh
LOPoTR/60i9gPHShK90YzBCGMozu9KAnvchPAQpSiPFMYCKTWM8GNrKJ6cxg
JrOYzRzmMo/5LGAhi6hPAxrSiMlMYSrTWM0a1rKOxSxhKcvYzBa2so3lrGAl
q9jODnayi93sYS/72M8BDnKIyOYoClGJxnHZCU5yitOc4SznOM8FLnKJy1zh
Kte4zg1ucovb3OEu97jPAx7yiMc84SnPiG4MMYhJLJ7LXvCSV7znAx/5xL/8
xx8CFvMPxU9+8Zu/+M7f/MNr3vCWdwFNtAlC0IDnAZ9lX/jKN4LLQhCSUIQm
DGEJR3giEJFI9NdmAAMZRGxZHOISL2A9UIe61KM4JShJKRKThKQkIzkpSEkq
UpOGtKQjPRnISCYyk4WsZCM7OchJLnKTh7zkIz8FKEgh4pOAhCSiMEUoSjEO
O6cjHOUY5WUVqEglKlOFqlSjOjWoSS1KU4aylKM+DWhIIxrThKY0ozktaEkr
WtOGtrSjPR3oSCe604Oe9KI3fehLv8D/e+4PYCCDGMwQhjKM4YxgJKMYzRjG
Mo7FLGEpy1jOClayiunMYCazGM8EJjKJ+SxgIYuYzBSmMo3ZzGEu81jNGtay
jtOc4Szn2MwWtrKN7exgJ7vYzR72so/LXOEq11jPBjayieOc4CSn2M8BDnKI
81zgIpc4zBGOcozMXqZZyEo2spODnOTivjoPeMgjHvOEpzzjOS94ySte84a3
vCOwPoIQlGAEJwQhCcVf6nznb/7hPR/4yCf+5T/+EPDi/6z8wle+cZ0b3OQW
odUJQ1jCkZo0pCUdkYlCVKIRnRjEJBaxiUNc4nFbn3e4yz3CyyIQkUgkJwUp
SUV8EpCQRKQnAxnJRGKSkJRkAefDF77yjdzkIS/52M0e9rKPwhShKMUoTglK
UorSlKEs5WhME5rSjOa0oCWtqE4NalKL8lSgIpWoTwMa0ojKVKEq1ahNHepS
j9a0oS3tGM0YxjKOznShK93oTg960ove9KEv/ZjMFKYyjfYEbAg70onhjGAk
o+jPAAYyiPFMYCKTGMwQhjKMv/jO3/xDfgpQkELMZwELWcRilrCUZSxnBStZ
xWrWsJZ1HOYIRznGcU5wklNsZwc72cV6NrCRTeznAAc5xGa2sJVtTGcGM5nF
ac5wlnO85g1vecdlrnCVa1znBje5xW3ucJd7zGYOc5nHeS5wkUs85wUvecV9
HvCQR7znAx/5xGOe8JRn/LCmfvKL3/yQ/eQXvwPmxyb/O3/zD8Ft/EMQklAE
JghBCUZyUpCSVIQnAhGJRHRiEJNYhCYMYQlHfBKQkEREJgpRiUZikpCUZKQm
DWlJR2WqUJVqpCcDGclEZrKQlWxkJwc5yUVs4hCXeOSnAAUpRGGKUJRiFKcE
JSlFacpQlnKUpwIVqUR717ADHelEdVkNalKL+jSgIY1oTBOa0ozmtKAlrWhN
G9rSjsEMYSjDGM4IRjKK7vSgJ70CxkMHOtKJ/gxgIIPoTBe60o3c5CEv+RjN
GMYyjtWsYS3rmMwUpjKN6cxgJrOYzRzmMo/a1KEu9RjPBCYyieWsYCWrmM8C
FrKI9WxgI5tYzBKWsozNbGEr29jODnayi93sYS/7CG+OIhCRSByWHeEoxzjO
CU5yitOc4SznOM8FLnKJy1zhKte4zg1ucovb3OEu97jPAx7yiMjGEIWoROOx
7AlPecZr3vCWd/zgJ7/4zV9852/+4TNf+Mo3nvOCl7ziX/7jDwEf/O+VH/jI
JwLLghCUYAHPB0IQklCEJgxhCUdvbfrQl35El8UgJrEC1gM1qEktClOEohQj
PglISCISk4SkJCM5KUhJKlKThrSkIz0ZyEgmMpOFrGQjOznISS5yk4e85CM2
cYhLPPJTgIIUYr9zOsBBDlFaVoaylKM8FahIJSpThapUozglKEkpalOHutSj
Pg1oSCMa04SmNKM5LWhJK1rThra0ozNd6Eo3utODnvQKmB/60Jd+9GcAAxnE
YIYwlGEMZwQjGcV8FrCQRSxmCUtZxmSmMJVpjGYMYxnHbOYwl3mMZwITmcR0
ZjCTWSxnBStZxXFOcJJTrGcDG9nEZrawlW1sZwc72cV5LnCRS6xmDWtZx2GO
cJRj7GYPe9nHac5wlnMB9wMHOMgh0gd3/5GRTGQmC1nJxm117nCXe9znAQ95
xGOe8JRnPOcFL3nFv/zHn2CB/v9nXGCCEJRgfJZ/4SvfeM0b3vKOH/zkF795
zwc+8onLXOEq1wiuzxCEJBTJSUFKUhGeCEQkEpGJQlSiEZ0YxCQW1/V5g5vc
IrQsDGEJR2KSkJRkxCYOcYlHatKQlnTEJwEJScR7PvCRT2QnBznJxXZ2sJNd
5KcABSlEYYpQlGIUpwQlKUV9GtCQRjSmCU1pRmWqUJVqlKYMZSlHbepQl3qU
pwIVqUR1alCTWjSnBS1pxXBGMJJRtKcDHelEZ7rQlW50pwc96cV4JjCRSbSm
DW1px2CGMJRh9KYPfenHaMYwlnH0ZwADGcS/9pT/8YeAn8i5ZXnISz5mM4e5
zGM+C1jIIhazhKUsYzkrWMkq9nOAgxziMEc4yjE2s4WtbGM1a1jLOnazh73s
Yz0b2MgmJjOFqUzjOCc4ySme84KXvOI8F7jIJS5zhatc4zo3uMktpjODmczi
NGc4yzke84SnPOM2d7jLPV7zhre84z4PeMgjPvOFr3zj/wATIQNv
"]]]}, {}, {}, {}, {}},
VertexColors->CompressedData["
1:eJzt280rRFEYBvAbKV8bU2ZKJMLCiqR8pNNMsWBBCkuZyEZECYU0pJSdsqLs
xMJGEYliohQbjUj5CJMwu0FJ4j+wcG/3ec95VlO/1dzznvd97rl3Ji/Y19yV
YFlWPMmyEn8/o0sNFXFvRA1++ZITOp/U0vd69Kj9WtHp9P/7Z3btQWPKiXpP
iu8vpkVVm+94wd96S6dDOFq/0Ol0HEebV3S6To7W73S6To7W73Q6HScfg5HP
8p7eG3UbKJ09TX9W0ayRsrGZK9scbR7SZTlaP9LpdHPyi/mot0uvL1q/0+31
cOrmaEHhgZpY/fBPVt2rcGaxpyj3ToyjrSeaS59v0h0tj+iyHG2eoDlaHpnm
0vOL+ch8NNnZv+6uD9o8p9vraPuZ+SXL0fYDmqOdR9AcrV5o9XV6/le37HYX
BPbUykZHuWc4pIamzkK+sUvbXHp+cX4yf02uL1pe0GXlr/R8lJ5fdL0dLe/Q
8hFt3tJlzX+060XLd+nzjetPR3a0eUKXlV90vc9fvP9h/prsaPvNNEeb52jO
92vuuvT1l+5o84pOZz6a49KfT0q/P+H9v96Odr/H/UPXKX/R+sW0/mJ93a1v
Uzh/Oqcupnyeku2drVdVs53hzew/t88zlud63h6Vt75yYHP8RR2uxWLzDxe2
ufT8RetHuiyXfv5Cm7do/Sv9+aH09Xf6+zudj2j9glZfut75Rdfbpecjz0d/
5KPD51O0/2ug/b6arnd+8Xynt6P1C9rzSbR6oTnng979JX3/0PXuL/avu+dH
x5357ur5F+160RxtntNlOdp+RstHfn+954/09UHrR7T1odNN7i/p+SLdpe9P
6e83fwBk5u4+
"]], GraphicsComplexBox[CompressedData["
1:eJxdlglQk0cYhnOQAEmpqB1BOqKItlVRFBVP2HVQNIBFaEuliDheRPEGFUFB
RDyqMCBHB6syVgUvaBnvc7eeoAVEI6ICKhYYVFAhYAyGNCR5ZaaZzfyT5P93
v+N53y9O81cGLhIJBIIjhnfX1SJ2ymSbxXXk0lxb/8Rga56dq9buSn9BIp6e
Xf70rDW/1yncNLXvE7IrP9Y7y1HGy5Z3/VBBJi1sTr3gJeO/LpvqPvDrcpJx
qbj63xUyLjC+Kif7bN202PetjN+ITrPbkHabpY/qa1hynmN6ns0tLo1JpXJ+
1+ufpKCEF+x43Pezr0+S8xPG3+vZhtG1JTvGyfmtHUv8Fw5oYiHXVsTJhXLu
tWeQYs+g9yz72rmwMSoZv7TKOcVJ2MryfNxtnY/IuFbf9WplkrwLxQ7bZdxx
wnFB/N9t7PTasqL7hngLjfu3M77Of2R6HxnP9PTKOVimYcj3wMPXt+bHdrAT
B196KodZc0dF14GfWFlI4sjHr634stRVS7bpO1lqVxgKK54bWt+np7eeadZL
/goYa8WnOaxpPiUX8DN1yT391Jbc2xivkHvst4l8O8WSW2fNMywhX7/azrAs
ecnbql+Czwj5aWNcUj7QeJ6IfxmVmVDgJuUPXHX3XXUivnN/pWFJuMvPdTd7
bhTzyq5wl0u4zpivmP/Qo21WjzYLfnR7jGF1X/E97sNz2Af74hzEsZsW7KQF
3XEibuSBvD7nac4bdUBdUCfUDXVEXVFn1B19QF/QJ/TtZVR2bVS2jI++2eh2
s7GF7TVzAC7ACbgBR+AKnN0xcwcOweUeM6fFZm4VZo7BdbqZ8xQz99ABdAGd
lJp1g3x+M+sKOoPuamaG9NsyyppfN8VHnsvy+rXnW/H3fzp8EOlfkU/hksSM
JVb8WVBig9VXTSQsckC57HdL7m/Kl3xZNefkxQBLLl757RiXni0E/dNLilyq
/FvJRBp3rreDlN/p5XT+wuw2EpM8ubxxhYRfMdWTbM5YcjjnmgW/nlWgPzlP
Q8DJw8HPop3ufyTPKh0j5/qK+VttmUw6pIM8KFRWFCpFfKipf2S2zQHnWaeF
fCZJenyjUEfARY+UjXnLVncS1YLSiEatnj03XclhaXvKsQQd23mqpXftSQEF
B9Liq7k/NgloRU5Eps30T+yoR1qCulNAFQFkTmxuB/Mz7UuVxnp+ZKPs0lzt
0oRUNXGnTx+qYTXRHXvqK4QUnPgG9fUJ6iuiDeMeKh7Zq5lbfl58dZKI2pPL
roNaWtk55arJIbtEdGVsQvzD863sO5PuKDgqmpbkPqFaRPvXT9QHLGhmS7tu
l4pp4CHvZIexr1i226I7GUPEFFxFZXldrZ4gpi4VWq8K7Us26Ml05yfTxXRM
9ZaIfRuqmG2viCET/cQUnG0rcH3f30tMl67ykD06dI+F0mVDbQzPf9wXWTqh
4TKzX7B71C17MQV355ujCwdrRDTYN1/lk3+DBAw7EzjsjIi257tvy51URIbo
thf6HRXRxKsd48vXlBDkAy7TjDoU0dR57yLuHakmR0bezqnRCWlYeKR7eGQ9
qUv3bEz3FFJwuDjwwN75o4X0fpao6IlFA0mdsyK5aYSQHl77uiI/pIGgHyON
57whoba80TNGQEuv/+RUtrmZ2F9seLPRTUC3JPSqUb56R14YfUdPwG2VtKl9
qUJPhs/YHph3pYVY6dXD5w7rJFJjvmqy/u4Y/kGhI/otYYkjmtQEvI2Pyzrm
om0jucEz7awKOwg4vmMdER2u1pI/XLRXeo/VkCgTJ0S+tTLzQ5vm8xXf4z48
h32wL87BuTpzHOvMcSFOxI08kBfyRN6oA+qCOqFuqCPqijqj7ugD+oI+oW/o
I/qKPsd/ERpWS7o5ACfgBhyBK3AG7sAhuASn4BYcg2twDu6hA+gCOoFu9pp1
BF1BZ9Dd0WTHFImqW5fQLXQMXUPn0D184JuqpXL6VEgXCZWTimdoWP9svUpq
+HytRBDUotB89hH4CuoP36lyCo5S6QXUQ9kRUzKj26fgW/Ax+Bp8Dr5na/ZB
+CJ8Er4JvuCr8Fn4rsrsw/Bl+DR8G9zC1+Hz8H3MAcwFzAnMDXCKuYI5g7mD
OYS5BO4wt/7///E/Zq8dUw==
"], {{}, {},
TagBox[
TooltipBox[
{GrayLevel[0], AbsoluteThickness[1.6],
LineBox[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68,
69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85,
86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101,
102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115,
116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128,
129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142,
143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155,
156, 157, 158, 159, 160, 161, 162, 163, 164, 165}]},
RowBox[{
RowBox[{
RowBox[{"-", "8"}], "+", "x1", "+",
SuperscriptBox["x1", "2"], "+", "x2", "+",
SuperscriptBox["x2", "2"]}], "\[Equal]", "0"}]],
Annotation[#, -8 + $CellContext`x1 + $CellContext`x1^2 + \
$CellContext`x2 + $CellContext`x2^2 == 0, "Tooltip"]& ]}],
GraphicsComplexBox[CompressedData["
1:eJxdlwtUVVUaxy/cp5UiNi7zhRUiqGuasRwbU2Z/RctErZRycIYe4EjJCEqk
KI6Q4UotHFNRcmRhZCIIY8JweYxGe2sKlDWNTjxUxjt3wAeGGG95DXPv+c7/
slZ3bdZZ53Aee3+P3/+/H1m5Liza22AwdLv+3MeUha2Lxp42qryi50c9ZP9e
frPd/1jwXqP6OO5qadzVWpl64R+hvje8VbJv9OrGfId8MuLonIij3urDK7F7
r8Q65aOh+6aG7vNWPkXHZzc1OOX+VzODLpd4qQLt+RtyxGMbXcNLlTUElDcE
3JIL3LdP9VKv/OlRY/NgsyzOdDyj8gzqIe09LTLy+DzXMKjWrTnuIWtK3S8a
kn/vHrnGUfijHIj36Yn3GZIh2nvaZOKhxg2HGgdlpvuwoV36ae8ZkJNfbxv7
eluHfEL79cvK8C3nw7d0ySmHneMPO3tlkTa/bnlv0hvu4TniOu7Dc3gP3ovv
4LuYB+aFeWLeWAfWhXVi3YgD4oI4IW6II+KKOCPuyAPygjwhb8gj8oo8I++o
g55v3L9/ysEh98+obo5bnFLUVCbliva0AGlSBu1XP//h935YVu5nVp9FvOzY
veOsGAi8Ud35N7O6qb2/UuyOPCLTa8zqrDHoLWPQRZFgCFhrCLCo7/j7omdp
0vjkeIvafCA86UD4ZfHFrTTXsKhzPF9h1+6zqOVaHJyitr3SNq3PokrDZpaE
zbwuNq5/zjWs6kuOh/CaG5Zhj7WqNRw/4TfrzvsPHLWqX3J8Rf/PTbvCvrWq
HZucDpraKk6t2PDpsSarSvrN1qy3in8UOX2J8/ePtqkXOX/iE68J2V4TbKq9
OXvU7ewOscd9OdSmoqvzu1o6OkSkenvcYy/alEWLR6e48uD4hXdd52nPXZ21
3adTvFQ9p+DmUps62RxKZw51i49u7P12c4xNVXB9CfuCNa5hUyNK/YdK/HtE
6cI417CpwPS1Aelrez3n6923lw6f39uYsy5moFdcSqD0H1zPN+63n4x6d0DY