-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlightning_model.py
185 lines (151 loc) · 5.58 KB
/
lightning_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import argparse
import logging
import os
import pprint
import random
import warnings
from typing import Literal
import matplotlib.pyplot as plt
import numpy as np
import polars as pl
import torch
import torch.nn.functional as F
import transformers
from kornia.geometry.transform import resize
from lightning import LightningModule
from model import DepthAnythingV2
from torch import nn
from torchmetrics import MetricCollection, classification, regression
class DepthAnythingV2Module(LightningModule):
model_configs = {
"vits": {"encoder": "vits", "features": 64, "out_channels": [48, 96, 192, 384]},
"vitb": {
"encoder": "vitb",
"features": 128,
"out_channels": [96, 192, 384, 768],
},
"vitl": {
"encoder": "vitl",
"features": 256,
"out_channels": [256, 512, 1024, 1024],
},
"vitg": {
"encoder": "vitg",
"features": 384,
"out_channels": [1536, 1536, 1536, 1536],
},
}
size_map = {
"vits": "depth-anything/Depth-Anything-V2-Small-hf",
"vitb": "depth-anything/Depth-Anything-V2-Base-hf",
"vitl": "depth-anything/Depth-Anything-V2-Large-hf",
"vitg": None,
}
def __init__(
self,
encoder: Literal["vits", "vitb", "vitl", "vitg"],
min_depth: float = 1e-4,
max_depth: float = 20,
lr: float = 0.000005,
use_huggingface: bool = False,
**kwargs,
):
super().__init__()
self.save_hyperparameters()
if not use_huggingface:
pretrained_from = f"base-checkpoints/{encoder}.pth"
self.model = DepthAnythingV2(**{**self.model_configs[encoder]})
self.model.load_state_dict(
{
k: v
for k, v in torch.load(pretrained_from, map_location="cpu").items()
if "pretrained" in k
},
strict=False,
)
else:
self.model = transformers.AutoModelForDepthEstimation.from_pretrained(
self.size_map[encoder], cache_dir="cache"
).train()
self.loss = nn.MSELoss()
self.metric = MetricCollection(
[regression.MeanSquaredError(), regression.MeanAbsoluteError()]
)
self.classification_metrics = MetricCollection(
[classification.JaccardIndex(task="binary")]
)
self.corr = MetricCollection([regression.PearsonCorrCoef()])
self.predictions = []
def configure_optimizers(self):
optimizer = torch.optim.AdamW(
self.parameters(),
lr=self.hparams.lr,
betas=(0.9, 0.999),
weight_decay=0.01,
)
scheduler = torch.optim.lr_scheduler.OneCycleLR(
optimizer,
total_steps=self.trainer.estimated_stepping_batches,
max_lr=self.hparams.lr,
pct_start=0.05,
cycle_momentum=False,
div_factor=1e9,
final_div_factor=1e4,
)
return {
"optimizer": optimizer,
"lr_scheduler": {"scheduler": scheduler, "interval": "step"},
}
def training_step(self, batch, batch_idx):
img, depth = self._preprocess_batch(batch)
pred = self.model(img).predicted_depth
pred = resize(pred, depth.shape[-2:], interpolation="bilinear").clamp(0, 1)
loss = self.loss(pred, depth)
self.log("train_loss", loss)
return loss
def validation_step(self, batch, batch_idx):
img, depth = self._preprocess_batch(batch)
pred = self.model(img).predicted_depth
pred = resize(pred, depth.shape[-2:], interpolation="bilinear").clamp(0, 1)
loss = self.loss(pred, depth)
self.log("val_loss", loss)
self.metric(pred, depth)
self.log_dict(self.metric)
if batch_idx < 10 and self.logger is not None:
fig = self.trainer.datamodule.val_dataset.plot(
img[0].cpu().detach(), depth[0].cpu().detach(), pred[0].cpu().detach()
)
self.logger.experiment.log_figure(
figure=fig, figure_name=f"val_{batch_idx}"
)
# fig.savefig(f"logs/val_{batch_idx}.png")
plt.close(fig)
return loss
def test_step(self, batch, batch_idx):
img, depth = self._preprocess_batch(batch)
pred = self.model(img).predicted_depth
pred = resize(pred, depth.shape[-2:], interpolation="bilinear").clamp(0, 1)
self.metric(pred, depth)
self.log_dict(self.metric)
self.classification_metrics(pred > 1e-4, depth > 1e-4)
self.log_dict(self.classification_metrics)
# self.corr(pred[depth > 1e-4].flatten(), depth[depth > 1e-4].flatten())
# self.log_dict(self.corr)
self.predictions.append(
{
"prediction": pred[depth > 1e-4].flatten().detach().cpu(),
"depth": depth[depth > 1e-4].flatten().detach().cpu(),
}
)
def predict_step(self, batch, batch_idx, dataloader_idx=None):
img, depth = self._preprocess_batch(batch)
pred = self.model(img).predicted_depth
pred = resize(pred, depth.shape[-2:], interpolation="bilinear").clamp(0, 1)
return pred
def _preprocess_batch(self, batch):
img, depth = batch["image"], batch["mask"]
img = resize(img, (518, 518), interpolation="bilinear")
depth = torch.clamp(
depth, min=self.hparams.min_depth, max=self.hparams.max_depth
)
return img, depth