-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
157 lines (130 loc) · 6.04 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import os
import wandb
import torch as th
import pytorch_lightning as pl
import config
import helpers
from data.data_module import DataModule
from models.build_model import build_model
from lib.loggers import ConsoleLogger, WeightsAndBiasesLogger
from lib.evaluate import evaluate, log_best_run
from lib import wandb_utils
def pre_train(cfg, net, data_module, save_dir, wandb_logger, console_logger):
print(f"{80 * '='}\nPre-training started\n{80 * '='}")
best_callback = pl.callbacks.ModelCheckpoint(dirpath=save_dir, filename="pre_train_best", verbose=True,
monitor="val_loss/tot", mode="min", every_n_epochs=cfg.eval_interval,
save_top_k=1)
checkpoint_callback = pl.callbacks.ModelCheckpoint(dirpath=save_dir, filename="pre_train_checkpoint_{epoch:04d}",
verbose=True, save_top_k=-1,
every_n_epochs=cfg.checkpoint_interval,
save_on_train_epoch_end=True)
trainer = pl.Trainer(
callbacks=[best_callback, checkpoint_callback],
logger=[wandb_logger, console_logger],
log_every_n_steps=data_module.n_batches,
check_val_every_n_epoch=cfg.eval_interval,
enable_progress_bar=False,
max_epochs=cfg.n_pre_train_epochs,
gpus=cfg.gpus,
deterministic=cfg.trainer_deterministic,
num_sanity_val_steps=cfg.num_sanity_val_steps,
detect_anomaly=cfg.detect_anomaly,
)
trainer.fit(net, datamodule=data_module)
print(f"{80 * '='}\nPre-training finished\n{80 * '='}")
def train(cfg, net, data_module, save_dir, wandb_logger, console_logger, initial_epoch=0):
best_callback = pl.callbacks.ModelCheckpoint(dirpath=save_dir, filename="best", verbose=True,
monitor="val_loss/tot", mode="min", every_n_epochs=cfg.eval_interval,
save_top_k=1)
checkpoint_callback = pl.callbacks.ModelCheckpoint(dirpath=save_dir, filename="checkpoint_{epoch:04d}",
verbose=True, save_top_k=-1,
every_n_epochs=cfg.checkpoint_interval,
save_on_train_epoch_end=True)
# ==== Train ====
try:
gradient_clip_val = cfg.model_config.optimizer_config.clip_norm
except AttributeError:
gradient_clip_val = 0
trainer = pl.Trainer(
callbacks=[best_callback, checkpoint_callback],
logger=[wandb_logger, console_logger],
log_every_n_steps=data_module.n_batches,
check_val_every_n_epoch=cfg.eval_interval,
enable_progress_bar=False,
max_epochs=(cfg.n_epochs + initial_epoch),
gradient_clip_val=gradient_clip_val,
gpus=cfg.gpus,
deterministic=cfg.trainer_deterministic,
num_sanity_val_steps=cfg.num_sanity_val_steps,
detect_anomaly=cfg.detect_anomaly,
# profiler="advanced"
)
trainer.fit(net, datamodule=data_module)
# ==== Evaluate ====
# Validation set
net.test_prefix = "val"
val_results = evaluate(net, best_callback.best_model_path, data_module.val_dataloader(), console_logger)
# Test set
net.test_prefix = "test"
test_results = evaluate(net, best_callback.best_model_path, data_module.test_dataloader(), console_logger)
# Log evaluation results
wandb_logger.log_summary(val_results, test_results)
wandb.join()
return val_results, test_results
def set_seeds(seed=None, workers=False, offset=0, deterministic_algorithms=True):
if seed is not None:
pl.seed_everything(seed + offset, workers=workers)
# th.use_deterministic_algorithms(deterministic_algorithms)
def main(ename, cfg, tag):
set_seeds(cfg.everything_seed)
data_module = DataModule(cfg.dataset_config)
val_logs, test_logs = [], []
for run in range(cfg.n_runs):
wandb_utils.clear_wandb_env()
set_seeds(seed=cfg.everything_seed, offset=run)
net = build_model(cfg.model_config, run=run)
print(net)
net.attach_data_module(data_module)
save_dir = helpers.get_save_dir(ename, tag, run)
os.makedirs(save_dir, exist_ok=True)
cfg.to_pickle(save_dir / "config.pkl")
wandb_logger = WeightsAndBiasesLogger(ename, tag, run, cfg, net)
console_logger = ConsoleLogger(ename, print_cmat=(cfg.n_clusters <= 10))
initial_epoch = 0
if net.requires_pre_train:
net.init_pre_train()
pre_train(
cfg=cfg,
net=net,
data_module=data_module,
save_dir=save_dir,
wandb_logger=wandb_logger,
console_logger=console_logger,
)
net.init_fine_tune()
console_logger.epoch_offset = cfg.n_pre_train_epochs
wandb_logger.epoch_offset = cfg.n_pre_train_epochs
val, test = train(
cfg=cfg,
net=net,
data_module=data_module,
save_dir=save_dir,
wandb_logger=wandb_logger,
console_logger=console_logger,
initial_epoch=initial_epoch,
)
val_logs.append(val)
test_logs.append(test)
best_val_logs, best_test_logs = log_best_run(val_logs, test_logs, cfg, ename, tag)
return val_logs, test_logs, best_val_logs, best_test_logs
if __name__ == '__main__':
print("Torch version:", th.__version__)
print("Lightning version:", pl.__version__)
ename, cfg = config.get_experiment_config()
wandb_env_vars = wandb_utils.clear_wandb_env()
tag = wandb_utils.get_experiment_tag()
all_logs = main(ename, cfg, tag)
if cfg.is_sweep:
# Log to the original sweep-run if this experiment is part of a sweep
sweep_run = wandb_utils.init_sweep_run(ename, tag, cfg, wandb_env_vars)
wandb_utils.finalize_sweep_run(sweep_run, all_logs)