-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmath.h
184 lines (148 loc) · 4.94 KB
/
math.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
// __ _ __ __ ____
// ____/ /___ _____ (_)__ / /___ ___ ___ / /_ / / /_ ___ _____
// / __ / __ `/ __ \/ / _ \/ / __ `__ \/ _ \/ __ \/ / __ \/ _ \/ ___/
// / /_/ / /_/ / / / / / __/ / / / / / / __/ / / / / /_/ / __/ /
// \__,_/\__,_/_/ /_/_/\___/_/_/ /_/ /_/\___/_/ /_/_/_.___/\___/_/
// https://github.com/danielmehlber
#pragma once
#include <memory>
#include <cmath>
#include "stdlib.h"
template <typename T> class Matrix;
template <typename T> struct Vec2;
template <typename T> struct Vec3;
#define PI 3.14159265359f
#define IS_UNSIGNED(x) (x >= 0)
template<typename T> inline T degree(T t){ return t * 180/PI; }
template<typename T> inline T radians(T t){ return t * PI/180; }
template<typename T> inline T random(T from, T to){
float random = ((float) rand()) / (float) RAND_MAX;
float diff = to - from;
float r = random * diff;
return from + r;
}
template<typename T> struct Vec3{
T x = NULL, y = NULL, z = NULL;
inline operator Matrix<T>() {
Matrix<T> r(1, 3);
r(0, 0) = x;
r(0, 1) = y;
r(0, 2) = z;
return r;
}
inline float length() const noexcept {
return std::sqrt(x*x + y*y + z*z);
}
inline Vec3<T> norm() const {
auto len = length();
if(len == 0) throw "Cannot normalize Vec3 of length 0.";
else/******/ return {x/len, y/len, z/len};
}
inline Vec3<T> operator-(const Vec3<T>& vec) const {
return {x - vec.x, y - vec.y, z - vec.z};
}
inline Vec3<T> operator+(const Vec3<T>& vec) const {
return {x + vec.x, y + vec.y, z + vec.z};
}
inline Vec3<T> operator* (const T t) const{
return {x * t, y * t, z * t};
}
inline T dot(const Vec3<T>& vec) const {
return vec.x * x + vec.y * y + vec.z * z;
}
inline Vec3<T> cross(const Vec3<T>& vec) const {
return {
y * vec.z - z * vec.y,
z * vec.x - x * vec.z,
x * vec.y - y * vec.x
};
}
inline operator Vec2<T>(){
return {x, y};
}
inline bool has_same_direction(const Vec3<T>& vec){
return IS_UNSIGNED(x) == IS_UNSIGNED(vec.x)
&& IS_UNSIGNED(y) == IS_UNSIGNED(vec.y)
&& IS_UNSIGNED(z) == IS_UNSIGNED(vec.z);
}
};
template<typename T> struct Vec2{
T x, y;
inline operator Matrix<T>() {
Matrix<T> r(1, 2);
r(0, 0) = x;
r(0, 1) = y;
return r;
}
inline operator Vec3<T>() {
return {x, y, 0};
}
};
template<typename T> class Matrix {
protected:
T* m_data;
const size_t m_colums, m_rows;
public:
Matrix() = delete;
Matrix(const size_t rows, const size_t columns);
Matrix(const Matrix& cpy);
~Matrix();
inline size_t columns() noexcept { return m_colums; };
inline size_t rows() noexcept { return m_rows; };
inline const T* data() noexcept { return m_data; }
inline T& operator()(const size_t row, const size_t column) const {
return m_data[column + row * m_rows];
// ^column ^row
}
inline Matrix<T> multiply(const Matrix<T>& m){
if(m.m_rows == m_colums)
Matrix<T> res(m.m_rows, m_colums);
}
inline Matrix<T> operator*(const Matrix<T>& m){
return multiply(m);
}
};
template <typename T> Matrix<T>::Matrix(const size_t rows, const size_t columns)
: m_colums{columns}, m_rows{rows}
{
auto size = columns * rows;
if(size == 0) throw "Matrix can't be of size 0";
m_data = new T[size];
}
template <typename T> Matrix<T>::~Matrix(){
delete[] m_data;
}
template <typename T> Matrix<T>::Matrix(const Matrix& cpy)
: m_colums{cpy.m_colums}, m_rows{cpy.m_rows}, m_data{m_rows * m_colums}
{
memcpy(m_data, cpy.data, m_colums * m_rows);
}
template <typename T> inline Vec3<T> rotateX(const Vec3<T>& vec, float degree){
auto len = vec.length();
auto rad = radians(degree);
rad += std::atan(vec.z / vec.y);
return {vec.x, cos(rad) * len, std::sin(rad) * len};
}
template <typename T> inline Vec3<T> rotateY(const Vec3<T>& vec, float degree){
auto len = vec.length();
auto rad = radians(degree);
rad += std::atan(vec.z / vec.x);
return {std::cos(rad) * len, vec.y, std::sin(rad) * len};
}
template <typename T> inline Vec3<T> rotateZ(const Vec3<T>& vec, float degree){
auto len = vec.length();
auto rad = radians(degree);
rad += std::atan(vec.y / vec.x);
return {std::cos(rad) * len, std::sin(rad) * len, vec.z};
}
template <typename T> inline Vec3<T> rotate(const Vec3<T>& vec, float x, float y, float z){
return rotateX(rotateY(rotateZ(vec, z), y), x);
}
inline float angle(const Vec3<float>& a, const Vec3<float>& b){
return std::acos(a.dot(b) / (a.length() * b.length()));
}
template <typename T> T clamp(T t, T _min, T _max){
if(t > _max) t = _max;
else if (t < _min) t = _min;
return t;
}