-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_iter.py
executable file
·220 lines (204 loc) · 8.93 KB
/
main_iter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import os
import sys
import json
import argparse
import pickle as pk
import numpy as np
from collections import Counter
import scipy.sparse as sp
from scipy.sparse import csr_matrix, coo_matrix
import torch
from torch.utils.data import DataLoader
from Datasets import MyDataSet
from model.Eland_itr import Eland_itr
from model.Eland_itr_unsup import Eland_itr_uns
from model.fraudar_iter import Fraudar_iter
def parseArgs():
arg_parser = argparse.ArgumentParser(description='Helper')
arg_parser.add_argument('--log_name', default='debug', type=str)
arg_parser.add_argument('--dataset', default='reddit', type=str)
arg_parser.add_argument('--graph_num', default=1, type=int)
arg_parser.add_argument('--method', default='gcn', type=str)
arg_parser.add_argument('--rnn', default='gru', type=str)
arg_parser.add_argument('--gpu', type=int, default=-1)
args = arg_parser.parse_args()
args.argv = sys.argv
if args.gpu >= 0:
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu)
args.device = torch.device('cuda:0')
args.argv = sys.argv
return args
def load_data_weibo(graph_num):
""" Initialize u2index, labels, train/validation/test indices """
u_all = set()
pos_uids = set()
with open('../data/weibo/userlabels', 'r') as f:
for line in f:
arr = line.strip('\r\n').split(',')
uid = arr[0]
u_all.add(uid)
if arr[1] == 'anomaly':
pos_uids.add(uid)
print(f'loaded labels, total of {len(u_all)} users with {len(pos_uids)} positive users')
u_all = list(u_all)
np.random.shuffle(u_all)
u2index = {}
labels = []
for u in u_all:
u2index[u] = len(u2index)
if u in pos_uids:
labels.append(1)
else:
labels.append(0)
labels = np.array(labels)
n_train = 5000
n_val = 5000
n_test = len(u_all) - 10000
idx_train = np.arange(n_train)
idx_val = np.arange(n_train, n_train+n_val)
idx_test = np.arange(n_train+n_val, n_train + n_val + n_test)
tvt_idx = (idx_train, idx_val, idx_test)
print('Train: total of {:5} users with {:5} pos users and {:5} neg users'.format(len(idx_train), np.sum(labels[idx_train]), len(idx_train)-np.sum(labels[idx_train])))
print('Val: total of {:5} users with {:5} pos users and {:5} neg users'.format(len(idx_val), np.sum(labels[idx_val]), len(idx_val)-np.sum(labels[idx_val])))
print('Test: total of {:5} users with {:5} pos users and {:5} neg users'.format(len(idx_test), np.sum(labels[idx_test]), len(idx_test)-np.sum(labels[idx_test])))
# Get Features
item_features = np.load(open('../data/weibo/prod2vec.npy', 'rb'), allow_pickle=True)
p2index_i = pk.load(open('../data/weibo/p2index.pkl', 'rb'))
p2index = {}
for p, i in p2index_i.items():
p2index[str(p)] = i
""" Get graph, graph features, and initialize u2index, p2index """
edges = Counter()
n = int(graph_num * 10)
edgelist_file = f'../data/weibo/splitted_edgelist_{n}' if n < 10 else '../data/weibo/edgelist'
with open(edgelist_file, 'r') as f:
for line in f:
arr = line.strip('\r\n').split(',')
u = arr[0]
p = arr[1]
t = int(arr[2])
assert p in p2index
edges[(u2index[u], p2index[p])] += 1
# Construct the graph
row = []
col = []
entry = []
for edge, w in edges.items():
i, j = edge
row.append(i)
col.append(j)
entry.append(w)
graph = csr_matrix((entry, (row, col)), shape=(len(u2index), len(p2index)))
# Construct features
user_features = np.zeros((len(u2index), 300))
for u, index in u2index.items():
cur_row = graph.getrow(index)
user_features[index] = cur_row.dot(item_features)
# normalize the user_features
w = np.sum(graph, axis = 1)
user_features = user_features / w
return u2index, labels, tvt_idx, user_features, p2index, item_features, graph
def load_data(ds, graph_num):
""" Initialize u2index, labels, train/validation/test indices """
u_all = set()
pos_uids = set()
labeled_uids = set()
with open(f'../data/{ds}/userlabels', 'r') as f:
for line in f:
arr = line.strip('\r\n').split(',')
u_all.add(arr[0])
if arr[1] == 'anomaly':
pos_uids.add(arr[0])
labeled_uids.add(arr[0])
elif arr[1] == 'benign':
labeled_uids.add(arr[0])
print(f'loaded labels, total of {len(pos_uids)} positive users and {len(labeled_uids)} labeled users')
# get users' features
u2index = pk.load(open(f'../data/{ds}/u2index.pkl', 'rb'))
user_feats = np.load(open(f'../data/{ds}/user2vec.npy', 'rb'), allow_pickle=True)
# Get prod features
p2index = pk.load(open(f'../data/{ds}/p2index.pkl', 'rb'))
item_feats = np.load(open(f'../data/{ds}/prod2vec.npy', 'rb'), allow_pickle=True)
labels = np.zeros(len(u2index))
for u in u2index:
if u in pos_uids:
labels[u2index[u]] = 1
labels = labels.astype(int)
tvt_idx = pk.load(open(f'../data/{ds}/tvt_idx.pkl', 'rb'))
idx_train, idx_val, idx_test = tvt_idx
# n_train = int(len(u2index) * 0.2)
# n_val = n_train
# n_test = len(u2index) - n_train - n_val
# idx_labeled = np.arange(len(u2index))
# np.random.shuffle(idx_labeled)
# idx_train = idx_labeled[:n_train]
# idx_val = idx_labeled[n_train: n_train+n_val]
# idx_test = idx_labeled[n_train+n_val: n_train + n_val + n_test]
# tvt_idx = (idx_train, idx_val, idx_test)
# pk.dump(tvt_idx, open(f'../data/{ds}/tvt_idx.pkl', 'wb'))
print('Train: total of {:5} users with {:5} pos users and {:5} neg users'.format(len(idx_train), np.sum(labels[idx_train]), len(idx_train)-np.sum(labels[idx_train])))
print('Val: total of {:5} users with {:5} pos users and {:5} neg users'.format(len(idx_val), np.sum(labels[idx_val]), len(idx_val)-np.sum(labels[idx_val])))
print('Test: total of {:5} users with {:5} pos users and {:5} neg users'.format(len(idx_test), np.sum(labels[idx_test]), len(idx_test)-np.sum(labels[idx_test])))
# return u2index, labels, tvt_idx, user_feats, p2index, item_feats
""" Get graph, graph features, and initialize u2index, p2index """
edges = Counter()
n = int(graph_num * 10)
edgelist_file = f'../data/{ds}/splitted_edgelist_{n}' if n < 10 else f'../data/{ds}/edgelist'
with open(edgelist_file, 'r') as f:
for line in f:
arr = line.strip('\r\n').split(',')
u = arr[0]
p = arr[1]
t = int(arr[2])
edges[(u2index[u], p2index[p])] += 1
# Construct the graph
row = []
col = []
entry = []
for edge, w in edges.items():
i, j = edge
row.append(i)
col.append(j)
entry.append(w)
graph = csr_matrix((entry, (row, col)), shape=(len(u2index), len(p2index)))
return u2index, labels, tvt_idx, user_feats, p2index, item_feats, graph
def main(ds, graph_num=0.1, name='debug', gnnlayer_type='gcn', device='cpu'):
# Graph
if ds == 'weibo':
u2index, labels, tvt_nids, user_features, p2index, item_features, graph = load_data_weibo(graph_num)
else:
u2index, labels, tvt_nids, user_features, p2index, item_features, graph = load_data(ds, graph_num)
if ds == 'amazon':
base_pred = 5000
elif ds == 'weibo':
base_pred = 500
else:
base_pred = 150
# DataLoader
n = int(graph_num * 10)
edgelist_file = f'../data/{ds}/splitted_edgelist_{n}' if n < 10 else f'../data/{ds}/edgelist'
dataset = MyDataSet(p2index, item_features, edgelist_file)
lstm_dataloader = DataLoader(dataset, batch_size=64)
elif args.method in ('dominant', 'deepae'):
eland = Eland_itr_uns(graph, lstm_dataloader, user_features,
item_features, labels, tvt_nids, u2index,
p2index, item_features, lr=0.01, n_layers=2,
name=name, bmloss_type='mse', device=device, base_pred=base_pred, method=args.method)
else:
eland = R_GCN_ITER(graph, lstm_dataloader, user_features,
item_features, labels, tvt_nids, u2index,
p2index, item_features, lr=0.01, n_layers=2,
name=name, gnnlayer_type=gnnlayer_type, bmloss_type='mse', device=device, base_pred=base_pred, rnn_type=args.rnn)
auc, ap = eland.train()
return auc, ap
if __name__ == '__main__':
args = parseArgs()
rates = [args.graph_num/10]
for rate in rates:
auc_res, ap_res = [], []
for _ in range(5):
auc, ap = main(args.dataset, graph_num=rate, name=f'{args.dataset}_{args.method}_{rate}_{args.rnn}', gnnlayer_type=args.method, device=args.device)
auc_res.append(auc)
ap_res.append(ap)
with open(f'ELANDitr_{args.dataset}_{args.method}_{rate}_{args.rnn}_result.txt', 'a') as f:
f.write(f'auc: {np.mean(auc_res)} +- {np.std(auc_res)}, ap: {np.mean(ap_res)} +- {np.std(ap_res)} \n')