-
Notifications
You must be signed in to change notification settings - Fork 1.7k
/
atari_wrappers.py
248 lines (201 loc) · 7.71 KB
/
atari_wrappers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import gym
import numpy as np
from gym import spaces
try:
import cv2 # pytype:disable=import-error
cv2.ocl.setUseOpenCL(False)
except ImportError:
cv2 = None
from stable_baselines3.common.type_aliases import GymObs, GymStepReturn
class NoopResetEnv(gym.Wrapper):
"""
Sample initial states by taking random number of no-ops on reset.
No-op is assumed to be action 0.
:param env: the environment to wrap
:param noop_max: the maximum value of no-ops to run
"""
def __init__(self, env: gym.Env, noop_max: int = 30):
gym.Wrapper.__init__(self, env)
self.noop_max = noop_max
self.override_num_noops = None
self.noop_action = 0
assert env.unwrapped.get_action_meanings()[0] == "NOOP"
def reset(self, **kwargs) -> np.ndarray:
self.env.reset(**kwargs)
if self.override_num_noops is not None:
noops = self.override_num_noops
else:
noops = self.unwrapped.np_random.randint(1, self.noop_max + 1)
assert noops > 0
obs = np.zeros(0)
for _ in range(noops):
obs, _, done, _ = self.env.step(self.noop_action)
if done:
obs = self.env.reset(**kwargs)
return obs
class FireResetEnv(gym.Wrapper):
"""
Take action on reset for environments that are fixed until firing.
:param env: the environment to wrap
"""
def __init__(self, env: gym.Env):
gym.Wrapper.__init__(self, env)
assert env.unwrapped.get_action_meanings()[1] == "FIRE"
assert len(env.unwrapped.get_action_meanings()) >= 3
def reset(self, **kwargs) -> np.ndarray:
self.env.reset(**kwargs)
obs, _, done, _ = self.env.step(1)
if done:
self.env.reset(**kwargs)
obs, _, done, _ = self.env.step(2)
if done:
self.env.reset(**kwargs)
return obs
class EpisodicLifeEnv(gym.Wrapper):
"""
Make end-of-life == end-of-episode, but only reset on true game over.
Done by DeepMind for the DQN and co. since it helps value estimation.
:param env: the environment to wrap
"""
def __init__(self, env: gym.Env):
gym.Wrapper.__init__(self, env)
self.lives = 0
self.was_real_done = True
def step(self, action: int) -> GymStepReturn:
obs, reward, done, info = self.env.step(action)
self.was_real_done = done
# check current lives, make loss of life terminal,
# then update lives to handle bonus lives
lives = self.env.unwrapped.ale.lives()
if 0 < lives < self.lives:
# for Qbert sometimes we stay in lives == 0 condtion for a few frames
# so its important to keep lives > 0, so that we only reset once
# the environment advertises done.
done = True
self.lives = lives
return obs, reward, done, info
def reset(self, **kwargs) -> np.ndarray:
"""
Calls the Gym environment reset, only when lives are exhausted.
This way all states are still reachable even though lives are episodic,
and the learner need not know about any of this behind-the-scenes.
:param kwargs: Extra keywords passed to env.reset() call
:return: the first observation of the environment
"""
if self.was_real_done:
obs = self.env.reset(**kwargs)
else:
# no-op step to advance from terminal/lost life state
obs, _, _, _ = self.env.step(0)
self.lives = self.env.unwrapped.ale.lives()
return obs
class MaxAndSkipEnv(gym.Wrapper):
"""
Return only every ``skip``-th frame (frameskipping)
:param env: the environment
:param skip: number of ``skip``-th frame
"""
def __init__(self, env: gym.Env, skip: int = 4):
gym.Wrapper.__init__(self, env)
# most recent raw observations (for max pooling across time steps)
self._obs_buffer = np.zeros((2,) + env.observation_space.shape, dtype=env.observation_space.dtype)
self._skip = skip
def step(self, action: int) -> GymStepReturn:
"""
Step the environment with the given action
Repeat action, sum reward, and max over last observations.
:param action: the action
:return: observation, reward, done, information
"""
total_reward = 0.0
done = None
for i in range(self._skip):
obs, reward, done, info = self.env.step(action)
if i == self._skip - 2:
self._obs_buffer[0] = obs
if i == self._skip - 1:
self._obs_buffer[1] = obs
total_reward += reward
if done:
break
# Note that the observation on the done=True frame
# doesn't matter
max_frame = self._obs_buffer.max(axis=0)
return max_frame, total_reward, done, info
def reset(self, **kwargs) -> GymObs:
return self.env.reset(**kwargs)
class ClipRewardEnv(gym.RewardWrapper):
"""
Clips the reward to {+1, 0, -1} by its sign.
:param env: the environment
"""
def __init__(self, env: gym.Env):
gym.RewardWrapper.__init__(self, env)
def reward(self, reward: float) -> float:
"""
Bin reward to {+1, 0, -1} by its sign.
:param reward:
:return:
"""
return np.sign(reward)
class WarpFrame(gym.ObservationWrapper):
"""
Convert to grayscale and warp frames to 84x84 (default)
as done in the Nature paper and later work.
:param env: the environment
:param width:
:param height:
"""
def __init__(self, env: gym.Env, width: int = 84, height: int = 84):
gym.ObservationWrapper.__init__(self, env)
self.width = width
self.height = height
self.observation_space = spaces.Box(
low=0, high=255, shape=(self.height, self.width, 1), dtype=env.observation_space.dtype
)
def observation(self, frame: np.ndarray) -> np.ndarray:
"""
returns the current observation from a frame
:param frame: environment frame
:return: the observation
"""
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
frame = cv2.resize(frame, (self.width, self.height), interpolation=cv2.INTER_AREA)
return frame[:, :, None]
class AtariWrapper(gym.Wrapper):
"""
Atari 2600 preprocessings
Specifically:
* NoopReset: obtain initial state by taking random number of no-ops on reset.
* Frame skipping: 4 by default
* Max-pooling: most recent two observations
* Termination signal when a life is lost.
* Resize to a square image: 84x84 by default
* Grayscale observation
* Clip reward to {-1, 0, 1}
:param env: gym environment
:param noop_max: max number of no-ops
:param frame_skip: the frequency at which the agent experiences the game.
:param screen_size: resize Atari frame
:param terminal_on_life_loss: if True, then step() returns done=True whenever a life is lost.
:param clip_reward: If True (default), the reward is clip to {-1, 0, 1} depending on its sign.
"""
def __init__(
self,
env: gym.Env,
noop_max: int = 30,
frame_skip: int = 4,
screen_size: int = 84,
terminal_on_life_loss: bool = True,
clip_reward: bool = True,
):
env = NoopResetEnv(env, noop_max=noop_max)
env = MaxAndSkipEnv(env, skip=frame_skip)
if terminal_on_life_loss:
env = EpisodicLifeEnv(env)
if "FIRE" in env.unwrapped.get_action_meanings():
env = FireResetEnv(env)
env = WarpFrame(env, width=screen_size, height=screen_size)
if clip_reward:
env = ClipRewardEnv(env)
super(AtariWrapper, self).__init__(env)