-
Notifications
You must be signed in to change notification settings - Fork 1.7k
/
Copy pathoff_policy_algorithm.py
607 lines (530 loc) · 26.1 KB
/
off_policy_algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
import io
import pathlib
import sys
import time
import warnings
from copy import deepcopy
from typing import Any, Dict, List, Optional, Tuple, Type, TypeVar, Union
import numpy as np
import torch as th
from gym import spaces
from stable_baselines3.common.base_class import BaseAlgorithm
from stable_baselines3.common.buffers import DictReplayBuffer, ReplayBuffer
from stable_baselines3.common.callbacks import BaseCallback
from stable_baselines3.common.noise import ActionNoise, VectorizedActionNoise
from stable_baselines3.common.policies import BasePolicy
from stable_baselines3.common.save_util import load_from_pkl, save_to_pkl
from stable_baselines3.common.type_aliases import GymEnv, MaybeCallback, RolloutReturn, Schedule, TrainFreq, TrainFrequencyUnit
from stable_baselines3.common.utils import safe_mean, should_collect_more_steps
from stable_baselines3.common.vec_env import VecEnv
from stable_baselines3.her.her_replay_buffer import HerReplayBuffer
SelfOffPolicyAlgorithm = TypeVar("SelfOffPolicyAlgorithm", bound="OffPolicyAlgorithm")
class OffPolicyAlgorithm(BaseAlgorithm):
"""
The base for Off-Policy algorithms (ex: SAC/TD3)
:param policy: The policy model to use (MlpPolicy, CnnPolicy, ...)
:param env: The environment to learn from
(if registered in Gym, can be str. Can be None for loading trained models)
:param learning_rate: learning rate for the optimizer,
it can be a function of the current progress remaining (from 1 to 0)
:param buffer_size: size of the replay buffer
:param learning_starts: how many steps of the model to collect transitions for before learning starts
:param batch_size: Minibatch size for each gradient update
:param tau: the soft update coefficient ("Polyak update", between 0 and 1)
:param gamma: the discount factor
:param train_freq: Update the model every ``train_freq`` steps. Alternatively pass a tuple of frequency and unit
like ``(5, "step")`` or ``(2, "episode")``.
:param gradient_steps: How many gradient steps to do after each rollout (see ``train_freq``)
Set to ``-1`` means to do as many gradient steps as steps done in the environment
during the rollout.
:param action_noise: the action noise type (None by default), this can help
for hard exploration problem. Cf common.noise for the different action noise type.
:param replay_buffer_class: Replay buffer class to use (for instance ``HerReplayBuffer``).
If ``None``, it will be automatically selected.
:param replay_buffer_kwargs: Keyword arguments to pass to the replay buffer on creation.
:param optimize_memory_usage: Enable a memory efficient variant of the replay buffer
at a cost of more complexity.
See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195
:param policy_kwargs: Additional arguments to be passed to the policy on creation
:param tensorboard_log: the log location for tensorboard (if None, no logging)
:param verbose: Verbosity level: 0 for no output, 1 for info messages (such as device or wrappers used), 2 for
debug messages
:param device: Device on which the code should run.
By default, it will try to use a Cuda compatible device and fallback to cpu
if it is not possible.
:param support_multi_env: Whether the algorithm supports training
with multiple environments (as in A2C)
:param monitor_wrapper: When creating an environment, whether to wrap it
or not in a Monitor wrapper.
:param seed: Seed for the pseudo random generators
:param use_sde: Whether to use State Dependent Exploration (SDE)
instead of action noise exploration (default: False)
:param sde_sample_freq: Sample a new noise matrix every n steps when using gSDE
Default: -1 (only sample at the beginning of the rollout)
:param use_sde_at_warmup: Whether to use gSDE instead of uniform sampling
during the warm up phase (before learning starts)
:param sde_support: Whether the model support gSDE or not
:param supported_action_spaces: The action spaces supported by the algorithm.
"""
def __init__(
self,
policy: Union[str, Type[BasePolicy]],
env: Union[GymEnv, str],
learning_rate: Union[float, Schedule],
buffer_size: int = 1_000_000, # 1e6
learning_starts: int = 100,
batch_size: int = 256,
tau: float = 0.005,
gamma: float = 0.99,
train_freq: Union[int, Tuple[int, str]] = (1, "step"),
gradient_steps: int = 1,
action_noise: Optional[ActionNoise] = None,
replay_buffer_class: Optional[Type[ReplayBuffer]] = None,
replay_buffer_kwargs: Optional[Dict[str, Any]] = None,
optimize_memory_usage: bool = False,
policy_kwargs: Optional[Dict[str, Any]] = None,
tensorboard_log: Optional[str] = None,
verbose: int = 0,
device: Union[th.device, str] = "auto",
support_multi_env: bool = False,
monitor_wrapper: bool = True,
seed: Optional[int] = None,
use_sde: bool = False,
sde_sample_freq: int = -1,
use_sde_at_warmup: bool = False,
sde_support: bool = True,
supported_action_spaces: Optional[Tuple[spaces.Space, ...]] = None,
):
super().__init__(
policy=policy,
env=env,
learning_rate=learning_rate,
policy_kwargs=policy_kwargs,
tensorboard_log=tensorboard_log,
verbose=verbose,
device=device,
support_multi_env=support_multi_env,
monitor_wrapper=monitor_wrapper,
seed=seed,
use_sde=use_sde,
sde_sample_freq=sde_sample_freq,
supported_action_spaces=supported_action_spaces,
)
self.buffer_size = buffer_size
self.batch_size = batch_size
self.learning_starts = learning_starts
self.tau = tau
self.gamma = gamma
self.gradient_steps = gradient_steps
self.action_noise = action_noise
self.optimize_memory_usage = optimize_memory_usage
self.replay_buffer_class = replay_buffer_class
if replay_buffer_kwargs is None:
replay_buffer_kwargs = {}
self.replay_buffer_kwargs = replay_buffer_kwargs
self._episode_storage = None
# Save train freq parameter, will be converted later to TrainFreq object
self.train_freq = train_freq
self.actor = None # type: Optional[th.nn.Module]
self.replay_buffer = None # type: Optional[ReplayBuffer]
# Update policy keyword arguments
if sde_support:
self.policy_kwargs["use_sde"] = self.use_sde
# For gSDE only
self.use_sde_at_warmup = use_sde_at_warmup
def _convert_train_freq(self) -> None:
"""
Convert `train_freq` parameter (int or tuple)
to a TrainFreq object.
"""
if not isinstance(self.train_freq, TrainFreq):
train_freq = self.train_freq
# The value of the train frequency will be checked later
if not isinstance(train_freq, tuple):
train_freq = (train_freq, "step")
try:
train_freq = (train_freq[0], TrainFrequencyUnit(train_freq[1]))
except ValueError as e:
raise ValueError(
f"The unit of the `train_freq` must be either 'step' or 'episode' not '{train_freq[1]}'!"
) from e
if not isinstance(train_freq[0], int):
raise ValueError(f"The frequency of `train_freq` must be an integer and not {train_freq[0]}")
self.train_freq = TrainFreq(*train_freq)
def _setup_model(self) -> None:
self._setup_lr_schedule()
self.set_random_seed(self.seed)
# Use DictReplayBuffer if needed
if self.replay_buffer_class is None:
if isinstance(self.observation_space, spaces.Dict):
self.replay_buffer_class = DictReplayBuffer
else:
self.replay_buffer_class = ReplayBuffer
elif self.replay_buffer_class == HerReplayBuffer:
assert self.env is not None, "You must pass an environment when using `HerReplayBuffer`"
# If using offline sampling, we need a classic replay buffer too
if self.replay_buffer_kwargs.get("online_sampling", True):
replay_buffer = None
else:
replay_buffer = DictReplayBuffer(
self.buffer_size,
self.observation_space,
self.action_space,
device=self.device,
optimize_memory_usage=self.optimize_memory_usage,
)
self.replay_buffer = HerReplayBuffer(
self.env,
self.buffer_size,
device=self.device,
replay_buffer=replay_buffer,
**self.replay_buffer_kwargs,
)
if self.replay_buffer is None:
self.replay_buffer = self.replay_buffer_class(
self.buffer_size,
self.observation_space,
self.action_space,
device=self.device,
n_envs=self.n_envs,
optimize_memory_usage=self.optimize_memory_usage,
**self.replay_buffer_kwargs,
)
self.policy = self.policy_class( # pytype:disable=not-instantiable
self.observation_space,
self.action_space,
self.lr_schedule,
**self.policy_kwargs, # pytype:disable=not-instantiable
)
self.policy = self.policy.to(self.device)
# Convert train freq parameter to TrainFreq object
self._convert_train_freq()
def save_replay_buffer(self, path: Union[str, pathlib.Path, io.BufferedIOBase]) -> None:
"""
Save the replay buffer as a pickle file.
:param path: Path to the file where the replay buffer should be saved.
if path is a str or pathlib.Path, the path is automatically created if necessary.
"""
assert self.replay_buffer is not None, "The replay buffer is not defined"
save_to_pkl(path, self.replay_buffer, self.verbose)
def load_replay_buffer(
self,
path: Union[str, pathlib.Path, io.BufferedIOBase],
truncate_last_traj: bool = True,
) -> None:
"""
Load a replay buffer from a pickle file.
:param path: Path to the pickled replay buffer.
:param truncate_last_traj: When using ``HerReplayBuffer`` with online sampling:
If set to ``True``, we assume that the last trajectory in the replay buffer was finished
(and truncate it).
If set to ``False``, we assume that we continue the same trajectory (same episode).
"""
self.replay_buffer = load_from_pkl(path, self.verbose)
assert isinstance(self.replay_buffer, ReplayBuffer), "The replay buffer must inherit from ReplayBuffer class"
# Backward compatibility with SB3 < 2.1.0 replay buffer
# Keep old behavior: do not handle timeout termination separately
if not hasattr(self.replay_buffer, "handle_timeout_termination"): # pragma: no cover
self.replay_buffer.handle_timeout_termination = False
self.replay_buffer.timeouts = np.zeros_like(self.replay_buffer.dones)
if isinstance(self.replay_buffer, HerReplayBuffer):
assert self.env is not None, "You must pass an environment at load time when using `HerReplayBuffer`"
self.replay_buffer.set_env(self.get_env())
if truncate_last_traj:
self.replay_buffer.truncate_last_trajectory()
def _setup_learn(
self,
total_timesteps: int,
callback: MaybeCallback = None,
reset_num_timesteps: bool = True,
tb_log_name: str = "run",
progress_bar: bool = False,
) -> Tuple[int, BaseCallback]:
"""
cf `BaseAlgorithm`.
"""
# Prevent continuity issue by truncating trajectory
# when using memory efficient replay buffer
# see https://github.com/DLR-RM/stable-baselines3/issues/46
# Special case when using HerReplayBuffer,
# the classic replay buffer is inside it when using offline sampling
if isinstance(self.replay_buffer, HerReplayBuffer):
replay_buffer = self.replay_buffer.replay_buffer
else:
replay_buffer = self.replay_buffer
truncate_last_traj = (
self.optimize_memory_usage
and reset_num_timesteps
and replay_buffer is not None
and (replay_buffer.full or replay_buffer.pos > 0)
)
if truncate_last_traj:
warnings.warn(
"The last trajectory in the replay buffer will be truncated, "
"see https://github.com/DLR-RM/stable-baselines3/issues/46."
"You should use `reset_num_timesteps=False` or `optimize_memory_usage=False`"
"to avoid that issue."
)
# Go to the previous index
pos = (replay_buffer.pos - 1) % replay_buffer.buffer_size
replay_buffer.dones[pos] = True
return super()._setup_learn(
total_timesteps,
callback,
reset_num_timesteps,
tb_log_name,
progress_bar,
)
def learn(
self: SelfOffPolicyAlgorithm,
total_timesteps: int,
callback: MaybeCallback = None,
log_interval: int = 4,
tb_log_name: str = "run",
reset_num_timesteps: bool = True,
progress_bar: bool = False,
) -> SelfOffPolicyAlgorithm:
total_timesteps, callback = self._setup_learn(
total_timesteps,
callback,
reset_num_timesteps,
tb_log_name,
progress_bar,
)
callback.on_training_start(locals(), globals())
while self.num_timesteps < total_timesteps:
rollout = self.collect_rollouts(
self.env,
train_freq=self.train_freq,
action_noise=self.action_noise,
callback=callback,
learning_starts=self.learning_starts,
replay_buffer=self.replay_buffer,
log_interval=log_interval,
)
if rollout.continue_training is False:
break
if self.num_timesteps > 0 and self.num_timesteps > self.learning_starts:
# If no `gradient_steps` is specified,
# do as many gradients steps as steps performed during the rollout
gradient_steps = self.gradient_steps if self.gradient_steps >= 0 else rollout.episode_timesteps
# Special case when the user passes `gradient_steps=0`
if gradient_steps > 0:
self.train(batch_size=self.batch_size, gradient_steps=gradient_steps)
callback.on_training_end()
return self
def train(self, gradient_steps: int, batch_size: int) -> None:
"""
Sample the replay buffer and do the updates
(gradient descent and update target networks)
"""
raise NotImplementedError()
def _sample_action(
self,
learning_starts: int,
action_noise: Optional[ActionNoise] = None,
n_envs: int = 1,
) -> Tuple[np.ndarray, np.ndarray]:
"""
Sample an action according to the exploration policy.
This is either done by sampling the probability distribution of the policy,
or sampling a random action (from a uniform distribution over the action space)
or by adding noise to the deterministic output.
:param action_noise: Action noise that will be used for exploration
Required for deterministic policy (e.g. TD3). This can also be used
in addition to the stochastic policy for SAC.
:param learning_starts: Number of steps before learning for the warm-up phase.
:param n_envs:
:return: action to take in the environment
and scaled action that will be stored in the replay buffer.
The two differs when the action space is not normalized (bounds are not [-1, 1]).
"""
# Select action randomly or according to policy
if self.num_timesteps < learning_starts and not (self.use_sde and self.use_sde_at_warmup):
# Warmup phase
unscaled_action = np.array([self.action_space.sample() for _ in range(n_envs)])
else:
# Note: when using continuous actions,
# we assume that the policy uses tanh to scale the action
# We use non-deterministic action in the case of SAC, for TD3, it does not matter
unscaled_action, _ = self.predict(self._last_obs, deterministic=False)
# Rescale the action from [low, high] to [-1, 1]
if isinstance(self.action_space, spaces.Box):
scaled_action = self.policy.scale_action(unscaled_action)
# Add noise to the action (improve exploration)
if action_noise is not None:
scaled_action = np.clip(scaled_action + action_noise(), -1, 1)
# We store the scaled action in the buffer
buffer_action = scaled_action
action = self.policy.unscale_action(scaled_action)
else:
# Discrete case, no need to normalize or clip
buffer_action = unscaled_action
action = buffer_action
return action, buffer_action
def _dump_logs(self) -> None:
"""
Write log.
"""
time_elapsed = max((time.time_ns() - self.start_time) / 1e9, sys.float_info.epsilon)
fps = int((self.num_timesteps - self._num_timesteps_at_start) / time_elapsed)
self.logger.record("time/episodes", self._episode_num, exclude="tensorboard")
if len(self.ep_info_buffer) > 0 and len(self.ep_info_buffer[0]) > 0:
self.logger.record("rollout/ep_rew_mean", safe_mean([ep_info["r"] for ep_info in self.ep_info_buffer]))
self.logger.record("rollout/ep_len_mean", safe_mean([ep_info["l"] for ep_info in self.ep_info_buffer]))
self.logger.record("time/fps", fps)
self.logger.record("time/time_elapsed", int(time_elapsed), exclude="tensorboard")
self.logger.record("time/total_timesteps", self.num_timesteps, exclude="tensorboard")
if self.use_sde:
self.logger.record("train/std", (self.actor.get_std()).mean().item())
if len(self.ep_success_buffer) > 0:
self.logger.record("rollout/success_rate", safe_mean(self.ep_success_buffer))
# Pass the number of timesteps for tensorboard
self.logger.dump(step=self.num_timesteps)
def _on_step(self) -> None:
"""
Method called after each step in the environment.
It is meant to trigger DQN target network update
but can be used for other purposes
"""
pass
def _store_transition(
self,
replay_buffer: ReplayBuffer,
buffer_action: np.ndarray,
new_obs: Union[np.ndarray, Dict[str, np.ndarray]],
reward: np.ndarray,
dones: np.ndarray,
infos: List[Dict[str, Any]],
) -> None:
"""
Store transition in the replay buffer.
We store the normalized action and the unnormalized observation.
It also handles terminal observations (because VecEnv resets automatically).
:param replay_buffer: Replay buffer object where to store the transition.
:param buffer_action: normalized action
:param new_obs: next observation in the current episode
or first observation of the episode (when dones is True)
:param reward: reward for the current transition
:param dones: Termination signal
:param infos: List of additional information about the transition.
It may contain the terminal observations and information about timeout.
"""
# Store only the unnormalized version
if self._vec_normalize_env is not None:
new_obs_ = self._vec_normalize_env.get_original_obs()
reward_ = self._vec_normalize_env.get_original_reward()
else:
# Avoid changing the original ones
self._last_original_obs, new_obs_, reward_ = self._last_obs, new_obs, reward
# Avoid modification by reference
next_obs = deepcopy(new_obs_)
# As the VecEnv resets automatically, new_obs is already the
# first observation of the next episode
for i, done in enumerate(dones):
if done and infos[i].get("terminal_observation") is not None:
if isinstance(next_obs, dict):
next_obs_ = infos[i]["terminal_observation"]
# VecNormalize normalizes the terminal observation
if self._vec_normalize_env is not None:
next_obs_ = self._vec_normalize_env.unnormalize_obs(next_obs_)
# Replace next obs for the correct envs
for key in next_obs.keys():
next_obs[key][i] = next_obs_[key]
else:
next_obs[i] = infos[i]["terminal_observation"]
# VecNormalize normalizes the terminal observation
if self._vec_normalize_env is not None:
next_obs[i] = self._vec_normalize_env.unnormalize_obs(next_obs[i, :])
replay_buffer.add(
self._last_original_obs,
next_obs,
buffer_action,
reward_,
dones,
infos,
)
self._last_obs = new_obs
# Save the unnormalized observation
if self._vec_normalize_env is not None:
self._last_original_obs = new_obs_
def collect_rollouts(
self,
env: VecEnv,
callback: BaseCallback,
train_freq: TrainFreq,
replay_buffer: ReplayBuffer,
action_noise: Optional[ActionNoise] = None,
learning_starts: int = 0,
log_interval: Optional[int] = None,
) -> RolloutReturn:
"""
Collect experiences and store them into a ``ReplayBuffer``.
:param env: The training environment
:param callback: Callback that will be called at each step
(and at the beginning and end of the rollout)
:param train_freq: How much experience to collect
by doing rollouts of current policy.
Either ``TrainFreq(<n>, TrainFrequencyUnit.STEP)``
or ``TrainFreq(<n>, TrainFrequencyUnit.EPISODE)``
with ``<n>`` being an integer greater than 0.
:param action_noise: Action noise that will be used for exploration
Required for deterministic policy (e.g. TD3). This can also be used
in addition to the stochastic policy for SAC.
:param learning_starts: Number of steps before learning for the warm-up phase.
:param replay_buffer:
:param log_interval: Log data every ``log_interval`` episodes
:return:
"""
# Switch to eval mode (this affects batch norm / dropout)
self.policy.set_training_mode(False)
num_collected_steps, num_collected_episodes = 0, 0
assert isinstance(env, VecEnv), "You must pass a VecEnv"
assert train_freq.frequency > 0, "Should at least collect one step or episode."
if env.num_envs > 1:
assert train_freq.unit == TrainFrequencyUnit.STEP, "You must use only one env when doing episodic training."
# Vectorize action noise if needed
if action_noise is not None and env.num_envs > 1 and not isinstance(action_noise, VectorizedActionNoise):
action_noise = VectorizedActionNoise(action_noise, env.num_envs)
if self.use_sde:
self.actor.reset_noise(env.num_envs)
callback.on_rollout_start()
continue_training = True
while should_collect_more_steps(train_freq, num_collected_steps, num_collected_episodes):
if self.use_sde and self.sde_sample_freq > 0 and num_collected_steps % self.sde_sample_freq == 0:
# Sample a new noise matrix
self.actor.reset_noise(env.num_envs)
# Select action randomly or according to policy
actions, buffer_actions = self._sample_action(learning_starts, action_noise, env.num_envs)
# Rescale and perform action
new_obs, rewards, dones, infos = env.step(actions)
self.num_timesteps += env.num_envs
num_collected_steps += 1
# Give access to local variables
callback.update_locals(locals())
# Only stop training if return value is False, not when it is None.
if callback.on_step() is False:
return RolloutReturn(num_collected_steps * env.num_envs, num_collected_episodes, continue_training=False)
# Retrieve reward and episode length if using Monitor wrapper
self._update_info_buffer(infos, dones)
# Store data in replay buffer (normalized action and unnormalized observation)
self._store_transition(replay_buffer, buffer_actions, new_obs, rewards, dones, infos)
self._update_current_progress_remaining(self.num_timesteps, self._total_timesteps)
# For DQN, check if the target network should be updated
# and update the exploration schedule
# For SAC/TD3, the update is dones as the same time as the gradient update
# see https://github.com/hill-a/stable-baselines/issues/900
self._on_step()
for idx, done in enumerate(dones):
if done:
# Update stats
num_collected_episodes += 1
self._episode_num += 1
if action_noise is not None:
kwargs = dict(indices=[idx]) if env.num_envs > 1 else {}
action_noise.reset(**kwargs)
# Log training infos
if log_interval is not None and self._episode_num % log_interval == 0:
self._dump_logs()
callback.on_rollout_end()
return RolloutReturn(num_collected_steps * env.num_envs, num_collected_episodes, continue_training)