-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathGraphRNA_endtoend.py
executable file
·170 lines (139 loc) · 6.26 KB
/
GraphRNA_endtoend.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import time
import argparse
import numpy as np
import torch
import torch.nn as nn
import scipy.io as sio
import torch.optim as optim
from sklearn.model_selection import train_test_split
from scipy.sparse import csc_matrix
from sklearn.metrics import f1_score
from math import ceil
from random_walk import walk_dic_featwalk
from models import pro_lstm_featwalk
# Training settings
parser = argparse.ArgumentParser()
parser.add_argument('--no-cuda', action='store_true', default=False, help='Disables CUDA training.')
parser.add_argument('--seed', type=int, default=10, help='Random seed.')
parser.add_argument('--gpu', type=int, default=0, help='GPU index.')
parser.add_argument('--epochs', type=int, default=200, help='Number of epochs to train.')
parser.add_argument('--lr', type=float, default=0.0001, help='Initial learning rate.')
parser.add_argument('--weight_decay', type=float, default=5e-4, help='Weight decay (L2 loss on parameters).')
parser.add_argument('--hidden', type=int, default=200, help='Number of hidden units.')
parser.add_argument('--clip_gradient', type=float, default=0.6, help='gradient clipping')
parser.add_argument('--dropout', type=float, default=0.5, help='Dropout rate (1 - keep probability).')
parser.add_argument('--num_paths', type=int, default=100)
parser.add_argument('--alpha', type=float, default=.4)
parser.add_argument('--path_length', type=int, default=5)
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--patience', type=int, default=10)
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
print(args)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
def train():
train_num = idx_train.shape[0]
splitnum = int(ceil(float(train_num) / args.batch_size))
model.train()
np.random.shuffle(idx_train)
preds = []
for batch_idx in range(splitnum):
optimizer.zero_grad()
indexblock = args.batch_size * batch_idx
batch_node_idx = idx_train[range(indexblock, indexblock + min(train_num - indexblock, args.batch_size))]
sentences = []
for i in batch_node_idx:
sentences.extend(sentencedic[i])
outi = model(features[sentences])
loss = criterion(outi, labels[batch_node_idx])
preds.append(outi.max(1)[1])
loss.backward()
# clip the gradient
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip_gradient)
optimizer.step()
def eval(idx_input):
eval_num = len(idx_input)
splitnum_eval = int(ceil(float(eval_num) / args.batch_size))
model.eval()
preds = []
for batch_idx in range(splitnum_eval):
indexblock = args.batch_size * batch_idx
batch_node_idx = idx_input[range(indexblock, indexblock + min(eval_num - indexblock, args.batch_size))]
sentences = []
for i in batch_node_idx:
sentences.extend(sentencedic[i])
preds.append(model(features[sentences]).max(1)[1])
preds = torch.cat((torch.stack(preds[:-1]).view(-1), preds[-1]), 0).cpu()
labeleval = labels[idx_input].cpu()
return f1_score(labeleval, preds, average='micro'), f1_score(labeleval, preds, average='macro')
if __name__ == "__main__":
'''################# Experimental Settings #################'''
mat_contents = sio.loadmat('data/Flickr_SDM.mat')
A = mat_contents["Attributes"]
Label = mat_contents["Label"]
G = mat_contents["Network"]
G.setdiag(0)
n, m = A.shape # num of nodes
Indices = np.random.randint(25, size=n) + 1
Group2 = []
[Group2.append(x) for x in range(0, len(Indices)) if Indices[x] >= 21] # test group
n2 = len(Group2) # num of nodes in test group
Group1 = []
[Group1.append(x) for x in range(0, len(Indices)) if Indices[x] <= 20]
n1 = len(Group1) # num of nodes in training group
features = A[Group1 + Group2, :] # torch.tensor(A[Group1+Group2, :].todense(), dtype=torch.float)
labels = torch.tensor(Label[Group1 + Group2, 0] - 1, dtype=torch.long)
adj = G[Group1 + Group2, :][:, Group1 + Group2].todense()
idx_test = torch.arange(n1, n1 + n2)
idx_train, idx_val = train_test_split(range(n1), test_size=0.1)
idx_train = torch.tensor(idx_train, dtype=torch.long)
idx_val = torch.tensor(idx_val, dtype=torch.long)
start_time = time.time()
adj = csc_matrix(adj)
sentencedic, sentnumdic = walk_dic_featwalk(adj, features, num_paths=args.num_paths,
path_length=args.path_length, alpha=args.alpha).function()
model = pro_lstm_featwalk(nfeat=features.shape[1], # num of categories
nhid=args.hidden,
nclass=labels.max().item() + 1,
dropout=args.dropout,
num_paths=args.num_paths,
path_length=args.path_length)
parameter = filter(lambda p: p.requires_grad, model.parameters())
optimizer = optim.Adam(parameter, lr=args.lr, weight_decay=args.weight_decay)
features = torch.tensor(features.todense(), dtype=torch.float)
features = torch.cat((features, torch.eye(features.shape[1])), 0)
if args.cuda:
torch.cuda.set_device(args.gpu)
model.cuda()
labels = labels.cuda()
features = features.cuda()
idx_train = idx_train.cuda()
idx_val = idx_val.cuda()
idx_test = idx_test.cuda()
criterion = nn.CrossEntropyLoss()
# Train model
early_stop = False
best_dev_acc = 0
iters_not_improved = 0
patience = args.patience # for early stopping
for epoch in range(args.epochs):
if early_stop:
print("Early Stopping. Epoch: {}, Best Dev Recall: {}".format(epoch, best_dev_acc))
break
train()
val_acc, __ = eval(idx_val)
if val_acc >= best_dev_acc:
best_dev_acc = val_acc
iters_not_improved = 0
imicro, imacro = eval(idx_test)
else:
iters_not_improved += 1
if iters_not_improved > patience:
early_stop = True
break
print("Optimization Finished!")
print("Total time elapsed: {:.4f}s".format(time.time() - start_time))
print("Test set results:", "accuracy= {:.4f}".format(imicro))