-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathConvertVideo.py
62 lines (48 loc) · 1.61 KB
/
ConvertVideo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import sys
import os
import keras.backend as K
from networks.faceswap_gan_model import FaceswapGANModel
from converter.video_converter import VideoConverter
from detector.face_detector import MTCNNFaceDetector
def blankfx():
sys.stdout = open(os.devnull, "w")
def conversion_fx():
K.set_learning_phase(0)
RESOLUTION = 256 # 64x64, 128x128, 256x256
assert (RESOLUTION % 64) == 0, "RESOLUTION should be 64, 128, 256"
# Architecture configuration
arch_config = {}
arch_config['IMAGE_SHAPE'] = (RESOLUTION, RESOLUTION, 3)
arch_config['use_self_attn'] = True
arch_config['norm'] = "instancenorm"
arch_config['model_capacity'] = "standard"
model = FaceswapGANModel(**arch_config)
model.load_weights(path="./models1")
mtcnn_weights_dir = "./mtcnn_weights/"
fd = MTCNNFaceDetector(sess=K.get_session(), model_path=mtcnn_weights_dir)
vc = VideoConverter()
vc.set_face_detector(fd)
vc.set_gan_model(model)
options = {
# ===== Fixed =====
"use_smoothed_bbox": True,
"use_kalman_filter": True,
"use_auto_downscaling": False,
"bbox_moving_avg_coef": 0.65,
"min_face_area": 35 * 35,
"IMAGE_SHAPE": model.IMAGE_SHAPE,
# ===== Tunable =====
"kf_noise_coef": 3e-3,
"use_color_correction": "hist_match",
"detec_threshold": 0.7,
"roi_coverage": 0.9,
"enhance": 0.,
"output_type": 3,
"direction": "AtoB",
}
input_fn = "testNOV12.3gpp" # update req
output_fn = "testNov10.mp4"
duration = None
vc.convert(input_fn=input_fn, output_fn=output_fn, options=options, duration=duration)
blankfx()
conversion_fx()