-
Notifications
You must be signed in to change notification settings - Fork 60
/
__init__.py
114 lines (92 loc) · 4.56 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import os
import copy
import warnings
import shutil
from functools import partial
import torch
from .model import load_pretrained_model
from .mm_utils import process_image, process_video, tokenizer_multimodal_token, get_model_name_from_path, KeywordsStoppingCriteria
from .constants import NUM_FRAMES, DEFAULT_IMAGE_TOKEN, DEFAULT_VIDEO_TOKEN, MODAL_INDEX_MAP
def model_init(model_path=None, **kwargs):
model_path = "DAMO-NLP-SG/VideoLLaMA2-7B" if model_path is None else model_path
model_name = get_model_name_from_path(model_path)
tokenizer, model, processor, context_len = load_pretrained_model(model_path, None, model_name, **kwargs)
if tokenizer.pad_token is None and tokenizer.unk_token is not None:
tokenizer.pad_token = tokenizer.unk_token
num_frames = model.config.num_frames if hasattr(model.config, "num_frames") else NUM_FRAMES
processor = {
'image': partial(process_image, processor=processor, aspect_ratio=None),
'video': partial(process_video, processor=processor, aspect_ratio=None, num_frames=num_frames),
}
return model, processor, tokenizer
def mm_infer(image_or_video, instruct, model, tokenizer, modal='video', **kwargs):
"""inference api of VideoLLaMA2 for video understanding.
Args:
model: VideoLLaMA2 model.
image_or_video (torch.Tensor): image tensor (1, C, H, W) / video tensor (T, C, H, W).
instruct (str): text instruction for understanding video.
tokenizer: tokenizer.
do_sample (bool): whether to sample.
modal (str): inference modality.
Returns:
str: response of the model.
"""
# 1. text preprocess (tag process & generate prompt).
if modal == 'image':
modal_token = DEFAULT_IMAGE_TOKEN
elif modal == 'video':
modal_token = DEFAULT_VIDEO_TOKEN
elif modal == 'text':
modal_token = ''
else:
raise ValueError(f"Unsupported modal: {modal}")
# 1. vision preprocess (load & transform image or video).
if modal == 'text':
tensor = None
else:
tensor = image_or_video.half().cuda()
tensor = [(tensor, modal)]
# 2. text preprocess (tag process & generate prompt).
if isinstance(instruct, str):
message = [{'role': 'user', 'content': modal_token + '\n' + instruct}]
elif isinstance(instruct, list):
message = copy.deepcopy(instruct)
message[0]['content'] = modal_token + '\n' + message[0]['content']
else:
raise ValueError(f"Unsupported type of instruct: {type(instruct)}")
if model.config.model_type in ['videollama2', 'videollama2_mistral', 'videollama2_mixtral']:
system_message = [
{'role': 'system', 'content': (
"""<<SYS>>\nYou are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature."""
"""\n"""
"""If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.\n<</SYS>>""")
}
]
else:
system_message = []
message = system_message + message
prompt = tokenizer.apply_chat_template(message, tokenize=False, add_generation_prompt=True)
input_ids = tokenizer_multimodal_token(prompt, tokenizer, modal_token, return_tensors='pt').unsqueeze(0).long().cuda()
attention_masks = input_ids.ne(tokenizer.pad_token_id).long().cuda()
# 3. generate response according to visual signals and prompts.
keywords = [tokenizer.eos_token]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
do_sample = kwargs.get('do_sample', False)
temperature = kwargs.get('temperature', 0.2 if do_sample else 0.0)
top_p = kwargs.get('top_p', 0.9)
max_new_tokens = kwargs.get('max_new_tokens', 2048)
with torch.inference_mode():
output_ids = model.generate(
input_ids,
attention_mask=attention_masks,
images=tensor,
do_sample=do_sample,
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
use_cache=True,
stopping_criteria=[stopping_criteria],
pad_token_id=tokenizer.eos_token_id,
)
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
return outputs