-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
38 lines (29 loc) · 1.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import os
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import RobertaTokenizer, TFRobertaForSequenceClassification
import tensorflow as tf
app = FastAPI()
# Obtenez le chemin du répertoire actuel
#current_directory = os.path.dirname(os.path.realpath(__file__))
# Utilisez le chemin relatif pour accéder au modèle Roberta dans le répertoire du projet
#MODEL_PATH = os.path.join(current_directory, "model", "roberta_model_V3")
# tokenizer Hugging face
tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
# Modèle entraîné
model = TFRobertaForSequenceClassification.from_pretrained('models')
class TweetRequest(BaseModel):
text: str
@app.post("/predict-sentiment/")
def predict_sentiment(tweet: TweetRequest):
# Vérifie si le texte est vide ou ne contient que des espaces blancs
if not tweet.text.strip():
raise HTTPException(status_code=422, detail="Text cannot be empty or just whitespace.")
inputs = tokenizer(tweet.text, return_tensors="tf", max_length=512, truncation=True, padding="max_length")
outputs = model(inputs['input_ids'], attention_mask=inputs['attention_mask'])
prediction = tf.argmax(outputs.logits, -1).numpy()[0]
# Assurez-vous que le modèle renvoie des prédictions binaires (0 ou 1)
if prediction not in [0, 1]:
raise HTTPException(status_code=500, detail="Model prediction was not 0 or 1.")
sentiment = "positive" if prediction == 1 else "negative"
return {"sentiment": sentiment}