-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathdata_utils.py
625 lines (489 loc) · 24.3 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
import torch
import torchvision
import torch.nn as nn
import torchvision.transforms as trans
from torch.utils.data import Dataset, DataLoader
import torchvision.models as models
import os
import sys
from osgeo import gdal
from osgeo import ogr
from osgeo import osr
import numpy as np
import cv2
from tqdm import tqdm
import gc
import math
import random
from PIL import Image
# ERROR 1: PROJ
os.environ['PROJ_LIB'] = r'/data/chen.wu/anaconda3/share/proj/'
# dataset to read remote sensing images with gdal
# the read patch is obtained from the large-scale image with overlaps
# when writing the patches, only the centering region without overlap padding is written
class GDALDataset(Dataset):
def __init__(self, imgPathX, imgPathY, refPath=None, outPath=None, transforms=None, enhance=None, patch_size=(200, 200), overlap_padding=(10, 10)):
super(GDALDataset, self).__init__()
self.imgPathX = imgPathX
self.imgDS_x = gdal.Open(imgPathX)
if self.imgDS_x is None:
print('No such a Image file:{}'.format(imgPathX))
sys.exit(0)
xsize = self.imgDS_x.RasterXSize
ysize = self.imgDS_x.RasterYSize
nband = self.imgDS_x.RasterCount
self.imgPathY = imgPathY
self.imgDS_y = gdal.Open(imgPathY)
if self.imgDS_y is None:
print('No such a Image file:{}'.format(imgPathY))
sys.exit(0)
xsize2 = self.imgDS_y.RasterXSize
ysize2 = self.imgDS_y.RasterYSize
nband2 = self.imgDS_y.RasterCount
if xsize != xsize2 or ysize != ysize2 or nband != nband2:
print('Image sizes don\'t match')
sys.exit(0)
self.transforms = transforms
self.enhance = enhance
xstart = list(range(0, xsize, patch_size[0] - 2 * overlap_padding[0]))
xend = [(x + patch_size[0] - 2 * overlap_padding[0]) for x in xstart if (x + patch_size[0] - 2 * overlap_padding[0] < xsize)]
xend.append(xsize)
ystart = list(range(0, ysize, patch_size[1] - 2 * overlap_padding[1]))
yend = [(y + patch_size[1] - 2 * overlap_padding[1]) for y in ystart if (y + patch_size[1] - 2 * overlap_padding[1] < ysize)]
yend.append(ysize)
self.xstart = xstart
self.xend = xend
self.ystart = ystart
self.yend = yend
self.patch_size = patch_size
self.overlap_padding = overlap_padding
self.refPath = refPath
if refPath is not None:
self.imgDS_ref = gdal.Open(refPath)
if self.imgDS_ref is None:
print('No such a Image file:{}'.format(refPath))
sys.exit(0)
xsize3 = self.imgDS_ref.RasterXSize
ysize3 = self.imgDS_ref.RasterYSize
nband3 = self.imgDS_ref.RasterCount
if xsize != xsize3 or ysize != ysize3 or nband3 != 1:
print('Reference sizes don\'t match image')
sys.exit(0)
else:
self.imgDS_ref = None
self.outPath = outPath
self.outDS = None
def __getitem__(self, item):
xitem_count, yitem_count = self.patch_count()
item_x = math.floor(item / yitem_count)
item_y = item % yitem_count
slice, slice_read, slice_write = self.slice_assign(item_x, item_y)
xsize, ysize, nband = self.size()
tmp_x = []
tmp_y = []
for b in range(nband):
tmp_x.append(self.imgDS_x.GetRasterBand(b + 1).ReadAsArray(slice_read[0], slice_read[1], slice_read[2], slice_read[3]))
tmp_y.append(self.imgDS_y.GetRasterBand(b + 1).ReadAsArray(slice_read[0], slice_read[1], slice_read[2], slice_read[3]))
tmp_x = np.array(tmp_x, dtype=float)
tmp_y = np.array(tmp_y, dtype=float)
if self.enhance is not None:
tmp_x = self.enhance(tmp_x, switch=1)
tmp_y = self.enhance(tmp_y, switch=2)
msImage_x = np.zeros((nband, self.patch_size[1], self.patch_size[0]), dtype=float)
msImage_y = np.zeros((nband, self.patch_size[1], self.patch_size[0]), dtype=float)
msImage_x[:, slice_write[1]:slice_write[1] + slice_write[3],
slice_write[0]:slice_write[0] + slice_write[2]] = tmp_x
msImage_y[:, slice_write[1]:slice_write[1] + slice_write[3],
slice_write[0]:slice_write[0] + slice_write[2]] = tmp_y
msImage_x = torch.from_numpy(msImage_x).float()
msImage_y = torch.from_numpy(msImage_y).float()
item = torch.tensor(item)
if self.transforms is not None:
msImage_x, sync = self.transforms(msImage_x)
msImage_y, sync = self.transforms(msImage_y, sync)
refImage = np.zeros((1, self.patch_size[1], self.patch_size[0]), dtype=float)
if self.imgDS_ref is not None:
tmp_ref = []
tmp_ref.append(self.imgDS_ref.GetRasterBand(1).ReadAsArray(slice_read[0], slice_read[1], slice_read[2],
slice_read[3]))
tmp_ref = np.array(tmp_ref, dtype=float)
refImage[:, slice_write[1]:slice_write[1] + slice_write[3],
slice_write[0]:slice_write[0] + slice_write[2]] = tmp_ref
refImage = torch.from_numpy(refImage).float()
return msImage_x, msImage_y, item, refImage
def __len__(self):
return len(self.xstart) * len(self.ystart)
def patch_count(self):
return len(self.xstart), len(self.ystart)
def size(self):
xsize = self.imgDS_x.RasterXSize
ysize = self.imgDS_x.RasterYSize
nband = self.imgDS_x.RasterCount
return xsize, ysize, nband
def slice_assign(self, item_x, item_y):
pad = self.overlap_padding
xsize, ysize, nband = self.size()
xstart = self.xstart[item_x]
xend = self.xend[item_x]
ystart = self.ystart[item_y]
yend = self.yend[item_y]
slice = (xstart, ystart, xend - xstart, yend - ystart)
x_ori = 0 if xstart - pad[0] > 0 else pad[0]
y_ori = 0 if ystart - pad[1] > 0 else pad[1]
xstart = xstart - pad[0] if xstart - pad[0] > 0 else 0
ystart = ystart - pad[1] if ystart - pad[1] > 0 else 0
xend = xend + pad[0] if xend + pad[0] < xsize else xsize
yend = yend + pad[1] if yend + pad[1] < ysize else ysize
slice_read = (xstart, ystart, xend - xstart, yend - ystart)
slice_write = (x_ori, y_ori, xend - xstart, yend - ystart)
return slice, slice_read, slice_write
def GDALwriteDefault(self, outImage, item):
# Only write one-band image
if self.outPath == None:
dir, fname = os.path.split(self.imgPathX)
fname, ext = os.path.splitext(fname)
fname = "{}_cmp{}".format(fname, ext)
outPath = os.path.join(dir, fname)
self.outPath = outPath
xsize, ysize, nband = self.size()
if self.outDS == None:
driver = self.imgDS_x.GetDriver()
self.outDS = driver.Create(self.outPath, xsize, ysize, 1, gdal.GDT_Float32)
if self.outDS == None:
print("Cannot make a output raster")
sys.exit(0)
self.outDS.SetGeoTransform(self.imgDS_x.GetGeoTransform())
self.outDS.SetProjection(self.imgDS_x.GetProjection())
outBand = self.outDS.GetRasterBand(1)
# outBand.SetNoDataValue(0)
else:
outBand = self.outDS.GetRasterBand(1)
xitem_count, yitem_count = self.patch_count()
item_x = math.floor(item / yitem_count)
item_y = item % yitem_count
slice, slice_read, slice_write = self.slice_assign(item_x, item_y)
pad = self.overlap_padding
outBand.WriteArray(outImage[0, pad[1]:pad[1]+slice[3], pad[0]:pad[0]+slice[2]], slice[0], slice[1])
def GDALwrite(self, outImage, item, outGDAL=None):
if outGDAL == None:
self.GDALwriteDefault(outImage.numpy(), item)
return
if outImage.shape[0] != outGDAL.RasterCount:
print('The band of output image doesn\'t match the output GDAL dataset')
sys.exit(0)
xitem_count, yitem_count = self.patch_count()
item_x = math.floor(item / yitem_count)
item_y = item % yitem_count
slice, slice_read, slice_write = self.slice_assign(item_x, item_y)
pad = self.overlap_padding
for b in range(outGDAL.RasterCount):
outBand = outGDAL.GetRasterBand(b + 1)
outBand.WriteArray(outImage[b, pad[1]:pad[1] + slice[3], pad[0]:pad[0] + slice[2]], slice[0], slice[1])
# read remote sensing images with gdal, and also the regional reference
class GDALDataset_RSS(Dataset):
# 初始化
def __init__(self, imgPathX, imgPathY, regionPath=None, refPath=None, outPath=None, transforms=None, enhance=None, patch_size=(200, 200), overlap_padding=(10, 10)):
super(GDALDataset_RSS, self).__init__()
self.DS = GDALDataset(imgPathX, imgPathY, refPath=refPath, outPath=outPath, transforms=transforms, enhance=enhance, patch_size=patch_size, overlap_padding=overlap_padding)
self.ds_len = self.DS.__len__()
self.regionPath = regionPath
self.patch_size = patch_size
if regionPath is not None:
self.imgDS_region = gdal.Open(regionPath)
if self.imgDS_region is None:
print('No such a Image file:{}'.format(regionPath))
sys.exit(0)
xsize = self.imgDS_region.RasterXSize
ysize = self.imgDS_region.RasterYSize
nband = self.imgDS_region.RasterCount
if xsize != self.DS.size()[0] or ysize != self.DS.size()[1] or nband != 1:
print('Reference sizes don\'t match image')
sys.exit(0)
else:
self.imgDS_region = None
def __getitem__(self, item):
msImage_x, msImage_y, item, refImage = self.DS.__getitem__(item)
xitem_count, yitem_count = self.DS.patch_count()
item_x = math.floor(item / yitem_count)
item_y = item % yitem_count
slice, slice_read, slice_write = self.DS.slice_assign(item_x, item_y)
regionImage = np.zeros((1, self.patch_size[1], self.patch_size[0]), dtype=float)
if self.imgDS_region is not None:
tmp_ref = []
tmp_ref.append(self.imgDS_region.GetRasterBand(1).ReadAsArray(slice_read[0], slice_read[1], slice_read[2],
slice_read[3]))
tmp_ref = np.array(tmp_ref, dtype=float)
regionImage[:, slice_write[1]:slice_write[1] + slice_write[3],
slice_write[0]:slice_write[0] + slice_write[2]] = tmp_ref
regionImage[regionImage > 125] = 1
regionImage = torch.from_numpy(regionImage).float()
return msImage_x, msImage_y, item, refImage, regionImage
def __len__(self):
return self.ds_len
def GDALwrite(self, outImage, item, outGDAL=None):
self.DS.GDALwrite(outImage, item, outGDAL)
# read OSCD dataset with regional reference
class OSCD_Dataset_RSS(Dataset):
def __init__(self, imgDir, txtName, scaler=None, transforms=None, patch_size=(200, 200), overlap_padding=(10, 10)):
super(OSCD_Dataset_RSS, self).__init__()
self.patch_size = patch_size
self.overlap_padding = overlap_padding
self.imgDir = imgDir
self.txtName = txtName
txtPath = os.path.join(imgDir, txtName)
f = open(txtPath, 'r')
if f is None:
print('No txt file')
sys.exit(0)
line = f.readline()
line = line.strip()
filename = line.split(',')
self.dslist = []
self.numlist = []
self.namelist = []
self.pathlist = []
# read the image pairs with the names in the txt file
for name in filename:
cur_path = os.path.join(imgDir, name, 'ImagePair')
img_name = [x for x in os.listdir(cur_path) if (os.path.splitext(x)[-1] == '') & (x.find(name) != -1)]
if len(img_name) != 2:
print('Error in finding image file {}'.format(cur_path))
sys.exit(0)
ref_name = [x for x in os.listdir(cur_path) if x.split('-')[-1] == 'cm.tif']
if len(ref_name) != 1:
print('Error in finding reference file {}'.format(cur_path))
sys.exit(0)
region_name = [x for x in os.listdir(cur_path) if x.split('-')[-1] == 'region.tif']
if len(region_name) != 1:
print('Error in finding region file {}'.format(cur_path))
sys.exit(0)
ImgXPath = os.path.join(cur_path, img_name[0])
ImgYPath = os.path.join(cur_path, img_name[1])
RefPath = os.path.join(cur_path, ref_name[0])
RegionPath = os.path.join(cur_path, region_name[0])
self.pathlist.append([ImgXPath, ImgYPath, RefPath, RegionPath])
if scaler is None:
cur_scaler = None
else:
if len(scaler) != len(filename):
print('The list of scaler doesn\'t match the file list')
sys.exit(0)
else:
idx = filename.index(name)
cur_scaler = scaler[idx]
if transforms is None:
cur_transforms = None
else:
if len(transforms) != len(filename):
print('The list of transforms doesn\'t match the file list')
sys.exit(0)
else:
idx = filename.index(name)
cur_transforms = transforms[idx]
dataset = GDALDataset_RSS(ImgXPath, ImgYPath, refPath=RefPath, regionPath=RegionPath, enhance=cur_scaler, transforms=cur_transforms, patch_size=patch_size, overlap_padding=overlap_padding)
self.dslist.append(dataset)
self.numlist.append(dataset.__len__())
self.namelist.append(name)
self.len = np.sum(np.array(self.numlist))
self.cumlen = np.cumsum(np.array(self.numlist)).tolist()
self.outGDALlist = []
self.outFilterlist = []
def __getitem__(self, item):
if item > self.cumlen[-1]:
print('item exceeds the len')
sys.exit(0)
item_ds = np.where(np.array(self.cumlen) > item)[0][0]
cur_item = item - self.cumlen[item_ds - 1] if item_ds > 0 else item
imgX, imgY, item, Ref, Region = self.dslist[item_ds].__getitem__(cur_item)
item = item + self.cumlen[item_ds - 1] if item_ds > 0 else item
return imgX, imgY, item, Ref, Region
def __len__(self):
return self.len
# return the center range without overlap padding
def EffRange(self, item):
if item > self.cumlen[-1]:
print('item exceeds the len')
sys.exit(0)
item_ds = np.where(np.array(self.cumlen) > item)[0][0]
cur_item = item - self.cumlen[item_ds - 1] if item_ds > 0 else item
xitem_count, yitem_count = self.dslist[item_ds].DS.patch_count()
pad = self.dslist[item_ds].DS.overlap_padding
item_x = math.floor(cur_item / yitem_count)
item_y = cur_item % yitem_count
slice, _, _ = self.dslist[item_ds].DS.slice_assign(item_x, item_y)
return pad[1], pad[1] + slice[3], pad[0], pad[0] + slice[2]
# write the output image without overlap padding
def GDALwrite(self, outImage, item, filterName):
if filterName not in self.outFilterlist:
self.outFilterlist.append(filterName)
GDALarray = [None for _ in range(len(self.namelist))]
self.outGDALlist.append(GDALarray)
idx = self.outFilterlist.index(filterName)
GDALarray = self.outGDALlist[idx]
item_ds = np.where(np.array(self.cumlen) > item)[0][0]
cur_item = item - self.cumlen[item_ds - 1] if item_ds > 0 else item
outGDAL = GDALarray[item_ds]
nband = outImage.shape[0]
if outGDAL == None:
driver = self.dslist[item_ds].DS.imgDS_x.GetDriver()
xsize, ysize, _ = self.dslist[item_ds].DS.size()
ds_name = self.namelist[item_ds]
# outName = '{}{}'.format(ds_name, filterName)
outName = '{}'.format(filterName)
outImg_path = os.path.join(self.imgDir, ds_name, 'ImagePair', outName)
outGDAL = driver.Create(outImg_path, xsize, ysize, nband, gdal.GDT_Float32)
if outGDAL == None:
print("Cannot make a output raster")
sys.exit(0)
outGDAL.SetGeoTransform(self.dslist[item_ds].DS.imgDS_x.GetGeoTransform())
outGDAL.SetProjection(self.dslist[item_ds].DS.imgDS_x.GetProjection())
# for b in range(nband):
# outBand = outGDAL.GetRasterBand(b + 1)
# outBand.SetNoDataValue(0)
GDALarray[item_ds] = outGDAL
self.outGDALlist[idx] = GDALarray
self.dslist[item_ds].GDALwrite(outImage, cur_item, outGDAL)
# dataset to read images
class WHU_Dataset(Dataset):
# 初始化
def __init__(self, imgDirX, imgDirY, refDir, labelDir, label_selected='-1', scale=None, transforms=None):
super(WHU_Dataset, self).__init__()
# label_selected: '1' all the CHANGED images in the label list
# label_selected: '0' all the UNCHANGED images in the label list
# label_selected: '-1' all the images in the label list
# label_selected: '-2' all the images no matter whether in the label list
labelPath = os.path.join(labelDir, 'label.txt')
with open(labelPath) as f:
data = f.readlines()
label_list = []
for line in data:
label_list.append(line.strip('\n').split(','))
self.label_list = label_list
imgFileNameX = [x for x in os.listdir(imgDirX) if self.is_image_file(x) and self.is_image_label(x, label_selected)]
imgFileNameY = [y for y in os.listdir(imgDirY) if self.is_image_file(y) and self.is_image_label(y, label_selected)]
# imgFileNameR = [r for r in os.listdir(refDir) if self.is_image_file(r) and self.is_image_label(r, label_selected)]
self.label_list = self.label_list_arrange(imgFileNameX)
if imgFileNameX != imgFileNameY:
print('The multi-temporal images don\'t match')
sys.exit(1)
self.imgPathX = [os.path.join(imgDirX, x) for x in imgFileNameX]
self.imgPathY = [os.path.join(imgDirY, y) for y in imgFileNameY]
self.RefPath = [os.path.join(refDir, r) for r in imgFileNameX]
self.transforms = transforms
self.scale = scale
self.meansX = []
self.stdX = []
self.meansY = []
self.stdY = []
def __getitem__(self, item):
imgX = Image.open(self.imgPathX[item])
imgY = Image.open(self.imgPathY[item])
imgX = np.array(imgX, dtype='float32')
imgY = np.array(imgY, dtype='float32')
imgX = imgX.transpose((2, 0, 1))
imgY = imgY.transpose((2, 0, 1))
label_item = self.label_list[item]
if int(label_item[3]) == 1:
Ref = Image.open(self.RefPath[item])
Ref = np.array(Ref)
Ref[Ref > 0] = 1
Ref = np.expand_dims(Ref, 0)
else:
Ref = np.zeros((1, imgX.shape[1], imgX.shape[2]))
if self.scale is not None:
imgX = self.scale(imgX, switch=1)
imgY = self.scale(imgY, switch=2)
imgX = torch.from_numpy(imgX).float()
imgY = torch.from_numpy(imgY).float()
Ref = torch.from_numpy(Ref).float()
item = torch.tensor(item)
label_list = [int(x) for x in self.label_list[item][1:]]
label = torch.tensor(label_list)
if self.transforms is not None:
imgX, sync = self.transforms(imgX)
imgY, sync = self.transforms(imgY, sync)
return imgX, imgY, Ref, item, label
def __len__(self):
return len(self.imgPathX)
def getFileName(self, item):
path, imgFileName = os.path.split(self.imgPathX[item])
return imgFileName
# the ext name to indicate image
def is_image_file(self, filename):
return any(filename.endswith(extension) for extension in ['.png', '.jpg', '.jpeg', '.PNG', '.JPG', '.tif'])
# function to filter images according to "label_selected"
def is_image_label(self, filename, label_selected):
if label_selected == '-2':
return True
for label_item in self.label_list:
if filename in label_item:
if label_selected == '-1':
return True
if label_item[3] == label_selected:
return True
else:
return False
return False
def label_list_arrange(self, filename_list):
label_list = []
for filename in filename_list:
label_temp = [filename, '-1', '-1', '-2']
for label_item in self.label_list:
if filename in label_item:
label_temp = label_item
break
label_list.append(label_temp)
return label_list
# dataset to load changed pairs and unchanged pairs in weakly supervised change detection task
# in CHANGED and UNCHANGED samples, the one with larger count is selected as the base
# the other one with smaller count is selected by random ordering and repeating
class WHU_Dataset_WSS(Dataset):
def __init__(self, imgDirX, imgDirY, refDir, labelDir, scale=None, transforms=None, random_assign=True):
# random_assign = False, order_reset() should be call in every epoch to confirm random matching between CHANGED samples and UNCHANGED samples
# every samples will be used in this pattern
# random_assign = True, the one with smaller count will be selected randomly in each __getitem__()
# maybe not all samples will be used in this pattern
super(WHU_Dataset_WSS, self).__init__()
self.cDS = WHU_Dataset(imgDirX, imgDirY, refDir, labelDir, scale=scale, label_selected='1')
self.ncDS = WHU_Dataset(imgDirX, imgDirY, refDir, labelDir, scale=scale, label_selected='0', transforms=transforms)
self.cds_len = self.cDS.__len__()
self.ncds_len = self.ncDS.__len__()
self.random_assign = random_assign
if random_assign == False:
self.order_reset()
# repeat the sample list of the CHANGED/UNCHANGED class with smaller count to match the other one with larger count
def order_reset(self):
if self.cds_len > self.ncds_len:
order_temp = [i for i in range(self.ncds_len)]
iter = math.ceil(self.cds_len / self.ncds_len)
ncds_order = []
for i in range(iter):
random.shuffle(order_temp)
ncds_order = ncds_order + order_temp
self.ncds_order = ncds_order[:self.cds_len]
self.cds_order = [i for i in range(self.cds_len)]
else:
order_temp = [i for i in range(self.cds_len)]
iter = math.ceil(self.ncds_len / self.cds_len)
cds_order = []
for i in range(iter):
random.shuffle(order_temp)
cds_order = cds_order + order_temp
self.cds_order = cds_order[:self.ncds_len]
self.ncds_order = [i for i in range(self.ncds_len)]
def __getitem__(self, item):
if self.random_assign == False:
item_ncds = self.ncds_order[item]
item_cds = self.cds_order[item]
else:
if self.cds_len > self.ncds_len:
item_cds = item
item_ncds = random.randint(0, self.ncds_len - 1)
else:
item_ncds = item
item_cds = random.randint(0, self.cds_len - 1)
cds_data = self.cDS.__getitem__(item_cds)
ncds_data = self.ncDS.__getitem__(item_ncds)
return cds_data, ncds_data
def __len__(self):
return max(self.cds_len, self.ncds_len)