-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
executable file
·238 lines (174 loc) · 6.18 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import argparse
import cv2
from maskrcnn_benchmark.config import cfg
from predictor import COCODemo
from refinenet.code.linemod_tools import LabelInfo
import time
import os
import json
import numpy as np
import glob
from evaluation.evaluation import *
def main(val_path):
parser = argparse.ArgumentParser(description="PyTorch Object Detection Webcam Demo")
parser.add_argument(
"--config-file",
default="../configs/caffe2/keypoints_R_101_FPN.yaml",
metavar="FILE",
help="path to config file",
)
parser.add_argument(
"--confidence-threshold",
type=float,
default=0.7,
help="Minimum score for the prediction to be shown",
)
parser.add_argument(
"--min-image-size",
type=int,
default=224,
help="Smallest size of the image to feed to the model. "
"Model was trained with 800, which gives best results",
)
parser.add_argument(
"--show-mask-heatmaps",
dest="show_mask_heatmaps",
help="Show a heatmap probability for the top masks-per-dim masks",
action="store_true",
)
parser.add_argument(
"--masks-per-dim",
type=int,
default=2,
help="Number of heatmaps per dimension to show",
)
parser.add_argument(
"opts",
help="Modify model config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
args = parser.parse_args()
# load config from file and command-line arguments
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
# prepare object that handles inference plus adds predictions on top of image
coco_demo = COCODemo(
cfg,
confidence_threshold=args.confidence_threshold,
show_mask_heatmaps=args.show_mask_heatmaps,
masks_per_dim=args.masks_per_dim,
min_image_size=args.min_image_size,
)
#
results=[]
print("testing ...")
# val_path='./../datasets/linemod/ape_train'
# val_list=glob.glob(val_path+'/*.png')
val_label=os.path.join(val_path,'val.txt')
#metric
add=0
adds=0
p_err=0
ps_err=0
val_label=os.path.join(val_path,'test.txt')
obj_name=val_path.split('/')[-1]
root_path=val_path
name=obj_name+'_train'
val_path=val_path.replace(obj_name,'data')
val_rootpath=os.path.join(val_path,name)
K=np.array([[572.4114, 0., 325.2611],
[0., 573.57043, 242.04899],
[0., 0., 1.]])
with open('./distance/'+obj_name+'.txt','r') as f:
diameter=float(f.readline())
f.close()
# print(diameter)
with open(val_label,'r') as fp:
val_imgs=fp.readlines()
# print(val_imgs)
fp.close()
for imgname in val_imgs[:50]:
per_dict={}
imgname=imgname.replace('\n','').split('/')[-1]
# print(imgname)
name=int(imgname.split('.')[0])
ori_name='color'+str(name)+'.jpg'
imgpath=os.path.join(val_rootpath,imgname)
img=cv2.imread(imgpath)
_,box,score,kpts= coco_demo.run_on_opencv_image(img)
np_box=box.cpu().numpy()
np_score=score.cpu().numpy()
p2d=kpts[0,:,:2]
#label
label=LabelInfo(root_path,ori_name)
model_3d=label.model
pose_gt=label.pose
p3d=np.array(label.fps["fps_8"])
pose_pred=pnp(p3d,p2d,K)
if obj_name=='glue':
per_add=adds_err(pose_gt,pose_pred,model_3d)
else:
per_add=add_err(pose_gt,pose_pred,model_3d)
if per_add<=5:
add+=1
if per_add<=diameter*0.1:
p_err+=1
print("add_error(0.1*d):{}".format(p_err/len(val_imgs)))
print("reprojection error(rep 5px):{}".format(add/len(val_imgs)))
return True
def compute_error():
repath='./result.json'
labelpath='./../datasets/linemod/annotations/ape_val.json'
with open(repath,'r') as f1:
results=json.load(f1)
f1.close()
with open(labelpath,'r') as f2:
labels=json.load(f2)
f2.close()
images=labels["images"]
anns=labels["annotations"]
results=results["ape"]
dist_error=0
for item in results:
# print(item)
imgname=[x for x in item.keys()][0]
print(imgname)
for img in images:
if img["file_name"]==imgname:
id=img["id"]
for ann in anns:
if ann["image_id"] ==id:
gt_box=ann["bbox"]
gt_kpts=ann["keypoints"]
gt_kpts=np.array(gt_kpts).reshape(len(gt_kpts)//3,3)
pre_box,pre_prob,pre_kpts=item[imgname]
# pre_prob= item.values()[1]
# pre_kpts=item.values()[2]
pre_box=pre_box[0]
pre_kpts=np.array(pre_kpts[0])
# print()
# print(pre_kpts)
dist_x=np.power(gt_kpts[:,0]-pre_kpts[:,0],2)
dist_y=np.power(gt_kpts[:,1]-pre_kpts[:,1],2)
dist_xy=np.sqrt(dist_x+dist_y)
print(dist_xy)
# print(pre_kpts[:,-1])
dist_error+=dist_xy.sum()/len(dist_xy)
# print(gt_kpts.shape)
print(dist_error/len(results))
# if __name__ == "__main__":
# main('./../datasets/linemod/ape')
# compute_error()
obj_list=['ape','benchvise','can','cat','driller','duck','glue','holepuncher','iron','phone']
main('/home/whs/pose_estimation/maskrcnn-benchmark-master/datasets/linemod/cat')
# root_path='/home/whs/pose_estimation/maskrcnn-benchmark-master/datasets/linemod'
# def test(path,obj_list):
# for obj in obj_list:
# obj_path=os.path.join(path,obj)
# main(obj_path)
# print("Done!")
# return True
# test(root_path,obj_list)