-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathcube_lib.php
1268 lines (1201 loc) · 44.2 KB
/
cube_lib.php
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<?php
/*
File: cube_lib.php
Date: 02 Apr 2010
Author(s): Conrad Rider (www.crider.co.uk)
Description: Php library for modelling a Rubik's cube
This file is part of VisualCube.
VisualCube is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
VisualCube is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with VisualCube. If not, see <http://www.gnu.org/licenses/>.
Copyright (C) 2010 Conrad Rider
*/
// Face constants
global $U, $R, $F, $D, $L, $B;
$U = 0; $R = 1; $F = 2; $D = 3; $L = 4; $B = 5;
// Corner Constants
global $URF, $UFL, $ULB, $UBR, $DFR, $DLF, $DBL, $DRB;
$URF = 0; $UFL = 1; $ULB = 2; $UBR = 3; $DFR = 4; $DLF = 5; $DBL = 6; $DRB = 7;
// Edge constants
global $UR, $UF, $UL, $UB, $DR, $DF, $DL, $DB, $FR, $FL, $BL, $BR;
$UR = 0; $UF = 1; $UL = 2; $UB = 3; $DR = 4; $DF = 5; $DL = 6; $DB = 7; $FR = 8; $FL = 9; $BL = 10; $BR = 11;
// Mapping from face constants to face letters
global $FACE_NAMES;
$FACE_NAMES = Array(
$U => 'u',
$R => 'r',
$F => 'f',
$D => 'd',
$L => 'l',
$B => 'b',
);
// A solved cube
global $SOLVED_CUBE;
$SOLVED_CUBE = Array(
Array( $U, $R, $F, $D, $L, $B ),
Array( $URF, $UFL, $ULB, $UBR, $DFR, $DLF, $DBL, $DRB ),
Array( 0, 0, 0, 0, 0, 0, 0, 0 ),
Array( $UR, $UF, $UL, $UB, $DR, $DF, $DL, $DB, $FR, $FL, $BL, $BR ),
Array( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ));
// Partial cubes used to verify the correct parts are solved
global $VCUBE;
$VCUBE = Array(
// Verify a solved first layer 2x2
'2FL' => Array(
Array( -1, -1, -1, -1, -1, -1 ),
Array( -1, -1, -1, -1, $DFR, $DLF, $DBL, $DRB ),
Array( -1, -1, -1, -1, 0, 0, 0, 0 ),
Array( -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
Array( -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 )),
// Verify an oriented first layer 2x2
'2OFL' => Array(
Array( -1, -1, -1, -1, -1, -1 ),
Array( -1, -1, -1, -1, -1, -1, -1, -1),
Array( -1, -1, -1, -1, 0, 0, 0, 0 ),
Array( -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
Array( -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 )),
// Verify orientation is completely solved for 2x2 PBL
'2O' => Array(
Array( -1, -1, -1, -1, -1, -1 ),
Array( -1, -1, -1, -1, -1, -1, -1, -1 ),
Array( 0, 0, 0, 0, 0, 0, 0, 0 ),
Array( -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ),
Array( -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 )),
// Verify a solved F2L on 3x3
'F2L' => Array(
Array( $U, $R, $F, $D, $L, $B ),
Array( -1, -1, -1, -1, $DFR, $DLF, $DBL, $DRB ),
Array( -1, -1, -1, -1, 0, 0, 0, 0 ),
Array( -1, -1, -1, -1, $DR, $DF, $DL, $DB, $FR, $FL, $BL, $BR ),
Array( -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0 )),
// Verify a solved F2L and OCLL (for OCLL, COLL, ZBLL)
'F2L_OCLL' => Array(
Array( $U, $R, $F, $D, $L, $B ),
Array( -1, -1, -1, -1, $DFR, $DLF, $DBL, $DRB ),
Array( -1, -1, -1, -1, 0, 0, 0, 0 ),
Array( -1, -1, -1, -1, $DR, $DF, $DL, $DB, $FR, $FL, $BL, $BR ),
Array( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )),
// Verify a solved F2L and T OCLL (for T ZBLL)
'F2L_OCLL_T' => Array(
Array( $U, $R, $F, $D, $L, $B ),
Array( -1, -1, -1, -1, $DFR, $DLF, $DBL, $DRB ),
Array( 0, 1, 2, 0, 0, 0, 0, 0 ),
Array( -1, -1, -1, -1, $DR, $DF, $DL, $DB, $FR, $FL, $BL, $BR ),
Array( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )),
// Verify a solved F2L and U OCLL (for Headlights ZBLL)
'F2L_OCLL_U' => Array(
Array( $U, $R, $F, $D, $L, $B ),
Array( -1, -1, -1, -1, $DFR, $DLF, $DBL, $DRB ),
Array( 0, 2, 1, 0, 0, 0, 0, 0 ),
Array( -1, -1, -1, -1, $DR, $DF, $DL, $DB, $FR, $FL, $BL, $BR ),
Array( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )),
// Verify a solved F2L and L OCLL (for L ZBLL)
'F2L_OCLL_L' => Array(
Array( $U, $R, $F, $D, $L, $B ),
Array( -1, -1, -1, -1, $DFR, $DLF, $DBL, $DRB ),
Array( 0, 2, 0, 1, 0, 0, 0, 0 ),
Array( -1, -1, -1, -1, $DR, $DF, $DL, $DB, $FR, $FL, $BL, $BR ),
Array( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )),
// Verify a solved F2L and H OCLL (for H ZBLL)
'F2L_OCLL_H' => Array(
Array( $U, $R, $F, $D, $L, $B ),
Array( -1, -1, -1, -1, $DFR, $DLF, $DBL, $DRB ),
Array( 2, 1, 2, 1, 0, 0, 0, 0 ),
Array( -1, -1, -1, -1, $DR, $DF, $DL, $DB, $FR, $FL, $BL, $BR ),
Array( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )),
// Verify a solved F2L and PI OCLL (for PI ZBLL)
'F2L_OCLL_PI' => Array(
Array( $U, $R, $F, $D, $L, $B ),
Array( -1, -1, -1, -1, $DFR, $DLF, $DBL, $DRB ),
Array( 1, 2, 2, 1, 0, 0, 0, 0 ),
Array( -1, -1, -1, -1, $DR, $DF, $DL, $DB, $FR, $FL, $BL, $BR ),
Array( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )),
// Verify a solved F2L and Sune OCLL (for Sune ZBLL)
'F2L_OCLL_S' => Array(
Array( $U, $R, $F, $D, $L, $B ),
Array( -1, -1, -1, -1, $DFR, $DLF, $DBL, $DRB ),
Array( 0, 2, 2, 2, 0, 0, 0, 0 ),
Array( -1, -1, -1, -1, $DR, $DF, $DL, $DB, $FR, $FL, $BL, $BR ),
Array( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )),
// Verify a solved F2L and Anti-sune OCLL (for Anti-sune ZBLL)
'F2L_OCLL_AS' => Array(
Array( $U, $R, $F, $D, $L, $B ),
Array( -1, -1, -1, -1, $DFR, $DLF, $DBL, $DRB ),
Array( 1, 0, 1, 1, 0, 0, 0, 0 ),
Array( -1, -1, -1, -1, $DR, $DF, $DL, $DB, $FR, $FL, $BL, $BR ),
Array( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )),
// Verify a solved F2L and OLL (for PLL)
'F2L_OLL' => Array(
Array( $U, $R, $F, $D, $L, $B ),
Array( -1, -1, -1, -1, $DFR, $DLF, $DBL, $DRB ),
Array( 0, 0, 0, 0, 0, 0, 0, 0 ),
Array( -1, -1, -1, -1, $DR, $DF, $DL, $DB, $FR, $FL, $BL, $BR ),
Array( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )),
// Verify a solved F2L and LL corners (for ELL)
'F2L_CLL' => Array(
Array( $U, $R, $F, $D, $L, $B ),
Array( $URF, $UFL, $ULB, $UBR, $DFR, $DLF, $DBL, $DRB ),
Array( 0, 0, 0, 0, 0, 0, 0, 0 ),
Array( -1, -1, -1, -1, $DR, $DF, $DL, $DB, $FR, $FL, $BL, $BR ),
Array( -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0 )),
// Verify a solved F2B (for CMLL)
'F2B' => Array(
Array( -1, $R, -1, -1, $L, -1 ),
Array( -1, -1, -1, -1, $DFR, $DLF, $DBL, $DRB ),
Array( -1, -1, -1, -1, 0, 0, 0, 0 ),
Array( -1, -1, -1, -1, $DR, -1, $DL, -1, $FR, $FL, $BL, $BR ),
Array( -1, -1, -1, -1, 0, -1, 0, -1, 0, 0, 0, 0 )),
// Verify a solved F2L minus last slot (for ELS)
'F2LS' => Array(
Array( $U, $R, $F, $D, $L, $B ),
Array( -1, -1, -1, -1, -1, $DLF, $DBL, $DRB ),
Array( -1, -1, -1, -1, -1, 0, 0, 0 ),
Array( -1, -1, -1, -1, $DR, $DF, $DL, $DB, -1, $FL, $BL, $BR ),
Array( -1, -1, -1, -1, 0, 0, 0, 0, -1, 0, 0, 0 )),
// Verify a solved F2L, minus last slot, with EO and solved FR (for CLS)
'F2LS_EO' => Array(
Array( $U, $R, $F, $D, $L, $B ),
Array( -1, -1, -1, -1, -1, $DLF, $DBL, $DRB ),
Array( -1, -1, -1, -1, -1, 0, 0, 0 ),
Array( -1, -1, -1, -1, $DR, $DF, $DL, $DB, $FR, $FL, $BL, $BR ),
Array( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ))
);
// An array storing all cubie-level moves
global $CUBIE_MOVES;
$CUBIE_MOVES = Array(
Array( // U
Array( $U, $R, $F, $D, $L, $B ),
Array( $UBR, $URF, $UFL, $ULB, $DFR, $DLF, $DBL, $DRB ),
Array( 0, 0, 0, 0, 0, 0, 0, 0 ),
Array( $UB, $UR, $UF, $UL, $DR, $DF, $DL, $DB, $FR, $FL, $BL, $BR ),
Array( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )),
Array( // R
Array( $U, $R, $F, $D, $L, $B ),
Array( $DFR, $UFL, $ULB, $URF, $DRB, $DLF, $DBL, $UBR ),
Array( 2, 0, 0, 1, 1, 0, 0, 2 ),
Array( $FR, $UF, $UL, $UB, $BR, $DF, $DL, $DB, $DR, $FL, $BL, $UR ),
Array( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )),
Array( // F
Array( $U, $R, $F, $D, $L, $B ),
Array( $UFL, $DLF, $ULB, $UBR, $URF, $DFR, $DBL, $DRB ),
Array( 1, 2, 0, 0, 2, 1, 0, 0 ),
Array( $UR, $FL, $UL, $UB, $DR, $FR, $DL, $DB, $UF, $DF, $BL, $BR ),
Array( 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0 )),
Array( // D
Array( $U, $R, $F, $D, $L, $B ),
Array( $URF, $UFL, $ULB, $UBR, $DLF, $DBL, $DRB, $DFR ),
Array( 0, 0, 0, 0, 0, 0, 0, 0 ),
Array( $UR, $UF, $UL, $UB, $DF, $DL, $DB, $DR, $FR, $FL, $BL, $BR ),
Array( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )),
Array( // L
Array( $U, $R, $F, $D, $L, $B ),
Array( $URF, $ULB, $DBL, $UBR, $DFR, $UFL, $DLF, $DRB ),
Array( 0, 1, 2, 0, 0, 2, 1, 0 ),
Array( $UR, $UF, $BL, $UB, $DR, $DF, $FL, $DB, $FR, $UL, $DL, $BR ),
Array( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )),
Array( // B
Array( $U, $R, $F, $D, $L, $B ),
Array( $URF, $UFL, $UBR, $DRB, $DFR, $DLF, $ULB, $DBL ),
Array( 0, 0, 1, 2, 0, 0, 2, 1 ),
Array( $UR, $UF, $UL, $BR, $DR, $DF, $DL, $BL, $FR, $FL, $UB, $DB ),
Array( 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1 )),
Array( // E
Array( $U, $F, $L, $D, $B, $R ),
Array( $URF, $UFL, $ULB, $UBR, $DFR, $DLF, $DBL, $DRB ),
Array( 0, 0, 0, 0, 0, 0, 0, 0 ),
Array( $UR, $UF, $UL, $UB, $DR, $DF, $DL, $DB, $FL, $BL, $BR, $FR ),
Array( 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1 )),
Array( // M
Array( $B, $R, $U, $F, $L, $D ),
Array( $URF, $UFL, $ULB, $UBR, $DFR, $DLF, $DBL, $DRB ),
Array( 0, 0, 0, 0, 0, 0, 0, 0 ),
Array( $UR, $UB, $UL, $DB, $DR, $UF, $DL, $DF, $FR, $FL, $BL, $BR ),
Array( 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0 )),
Array( // S
Array( $L, $U, $F, $R, $D, $B ),
Array( $URF, $UFL, $ULB, $UBR, $DFR, $DLF, $DBL, $DRB ),
Array( 0, 0, 0, 0, 0, 0, 0, 0 ),
Array( $UL, $UF, $DL, $UB, $UR, $DF, $DR, $DB, $FR, $FL, $BL, $BR ),
Array( 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0 )));
// Now that the elementry moves are defined, the rest of the moves can be built
$CUBIE_MOVES = Array(
$CUBIE_MOVES[0],
$CUBIE_MOVES[1],
$CUBIE_MOVES[2],
$CUBIE_MOVES[3],
$CUBIE_MOVES[4],
$CUBIE_MOVES[5],
prod(array_copy($CUBIE_MOVES[0]), $CUBIE_MOVES[6], 3),
prod(array_copy($CUBIE_MOVES[1]), $CUBIE_MOVES[7], 3),
prod(array_copy($CUBIE_MOVES[2]), $CUBIE_MOVES[8], 1),
prod(array_copy($CUBIE_MOVES[3]), $CUBIE_MOVES[6], 1),
prod(array_copy($CUBIE_MOVES[4]), $CUBIE_MOVES[7], 1),
prod(array_copy($CUBIE_MOVES[5]), $CUBIE_MOVES[8], 3),
$CUBIE_MOVES[6],
$CUBIE_MOVES[7],
$CUBIE_MOVES[8],
prod(prod(array_copy($CUBIE_MOVES[0]), $CUBIE_MOVES[3], 3), $CUBIE_MOVES[6], 3),
prod(prod(array_copy($CUBIE_MOVES[1]), $CUBIE_MOVES[4], 3), $CUBIE_MOVES[7], 3),
prod(prod(array_copy($CUBIE_MOVES[2]), $CUBIE_MOVES[5], 3), $CUBIE_MOVES[8], 1));
// Mapping from power to chr to represent it
global $ALG_POW;
$ALG_POW = Array ('', "2", "'");
// Returns the case identified by this alg (or -1 if not belonging to group),
// as well an amended alg with any rotations required to make it fit the group
function gen_state($moves, $puzzle, $group_id, $is_ll){
global $SOLVED_CUBE, $CUBIE_MOVES, $VCUBE;
//println("\nGENSTATE:\ninput moves=$moves");
$moves = trim_rotations($moves, $is_ll);
//println("trimmed moves=$moves");
// 1. Apply different combinations of initial
// and final moves until a solved state is found
$prtns = Array("", "x", "x'", "x2", "z", "z'", "y", "y'");
$frtns = Array("", "x", "x'", "x2", "z", "z'", "y", "y'");
$valid = false;
for($i = 0; $i < count($frtns) && !$valid; $i++){
for($j = 0; $j < count($prtns) && !$valid; $j++){
$cube = case_cube($prtns[$j].$moves.$frtns[$i]);
//println("testing cube: ".$prtns[$j].$moves.$frtns[$i]);
//printcube($cube, 3);
if(is_member($cube, $group_id)){
$prtn = $prtns[$j];
$frtn = $frtns[$i];
$moves = "$prtn$moves$frtn";
$valid = true;
}
}
}
// Stop here if alg not valid
if(!$valid) return Array(-1, $moves);
//println("corrected moves=$prtn$moves$frtn");
// 2. Find angle to apply alg which results in lowest state id
// This is necessery to ensure all rotations of same alg are given same state
// Generate 4 case cubes
$cubes = case_cubes2($moves, Array("", "y", "y2", "y'"));
$state = PHP_INT_MAX;
foreach($cubes as $cube){
//printcube($cube, 3);
// Check cube from all y rotation angles
for($i = 0; $i < 4; $i++){
// Generate identifier for state (depends on alg purpose)
$s = cube_state($cube, $group_id);
//println($s);
// Set it as main ID if lowest found so-far
if($s < $state && $s != -1) $state = $s;
// Rotate cube by y
$cube = prod($cube, $CUBIE_MOVES[move_id('y')], 1);
}
}
//println("detected state=$state");
// Return cube state and moves which make cube state valid
return Array($state, $prtn, $frtn);
}
// Rotate input alg to match reference alg's orientation and output corrected alg
function orient_alg($alg, $ref, $puzzle, $group_id){
global $SOLVED_CUBE, $CUBIE_MOVES, $ALG_POW;
// Remove initial y rotations from alg
$alg = preg_replace('/^y[2\']?/', '', $alg);
$cubes = case_cubes2($alg, Array("", "y", "y2", "y'"));
$ref_cube = case_cube($ref);
//print_r2($ref_cube[1]);
//print_r2($ref_cube[3]);
$match = false;
foreach($cubes as $cube){
// Now apply up to 3 y twists until the case matches
$r = 0;
while(!$match && $r < 4){
// Detection of identical case (inc cube oriented correctly)
// For OLL all LL orientations should match
switch($group_id){
case 1: // OLL
$match = cube_match(array_slice($cube[2], 0, 4), array_slice($ref_cube[2], 0, 4)); // CO
break;
case 2: // PBL (permutation of all corners)
$match = cube_match($cube[1], $ref_cube[1]); // CP
break;
case 3: // CLL (LL orientation + permutation)
$match = cube_match(array_slice($cube[2], 0, 4), array_slice($ref_cube[2], 0, 4)) // CO
&& cube_match(array_slice($cube[1], 0, 4), array_slice($ref_cube[1], 0, 4)); // CP
break;
case 4: // OLL
$match = cube_match(array_slice($cube[2], 0, 4), array_slice($ref_cube[2], 0, 4)) // CO
&& cube_match(array_slice($cube[4], 0, 4), array_slice($ref_cube[4], 0, 4)); // EO
break;
case 5: // PLL
$match = cube_match(array_slice($cube[1], 0, 4), array_slice($ref_cube[1], 0, 4)) // CP
&& cube_match(array_slice($cube[3], 0, 4), array_slice($ref_cube[3], 0, 4)); // EP
break;
case 6: // CLL
$match = cube_match(array_slice($cube[1], 0, 4), array_slice($ref_cube[1], 0, 4)) // CP
&& cube_match(array_slice($cube[2], 0, 4), array_slice($ref_cube[2], 0, 4)); // CO
break;
case 7: // ELL
$match = cube_match(array_slice($cube[3], 0, 4), array_slice($ref_cube[3], 0, 4)) // EP
&& cube_match(array_slice($cube[4], 0, 4), array_slice($ref_cube[4], 0, 4)); // EO
break;
case 8: // CMLL
$match = cube_match(array_slice($cube[1], 0, 4), array_slice($ref_cube[1], 0, 4)) // CP
&& cube_match(array_slice($cube[2], 0, 4), array_slice($ref_cube[2], 0, 4)); // CO
break;
case 9: // COLL
$match = cube_match(array_slice($cube[1], 0, 4), array_slice($ref_cube[1], 0, 4)) // CP
&& cube_match(array_slice($cube[2], 0, 4), array_slice($ref_cube[2], 0, 4)); // CO
break;
case 10: // ZBLL
$match = cube_match(array_slice($cube[1], 0, 4), array_slice($ref_cube[1], 0, 4)) // CP
&& cube_match(array_slice($cube[2], 0, 4), array_slice($ref_cube[2], 0, 4)) // CO
&& cube_match(array_slice($cube[3], 0, 4), array_slice($ref_cube[3], 0, 4)); // EP
break;
case 11: // ELS
$match = cube_match(array_slice($cube[4], 0, 4), array_slice($ref_cube[4], 0, 4)) // EO
&& els_FR($cube) == els_FR($ref_cube);
break;
case 12: // CLS
cube_match(array_slice($cube[2], 0, 4), array_slice($ref_cube[2], 0, 4)); // CO
break;
case 13: // ZBLL-T
$match = cube_match(array_slice($cube[1], 0, 4), array_slice($ref_cube[1], 0, 4)) // CP
&& cube_match(array_slice($cube[2], 0, 4), array_slice($ref_cube[2], 0, 4)) // CO
&& cube_match(array_slice($cube[3], 0, 4), array_slice($ref_cube[3], 0, 4)); // EP
break;
case 14: // ZBLL-U
$match = cube_match(array_slice($cube[1], 0, 4), array_slice($ref_cube[1], 0, 4)) // CP
&& cube_match(array_slice($cube[2], 0, 4), array_slice($ref_cube[2], 0, 4)) // CO
&& cube_match(array_slice($cube[3], 0, 4), array_slice($ref_cube[3], 0, 4)); // EP
break;
case 15: // ZBLL-L
$match = cube_match(array_slice($cube[1], 0, 4), array_slice($ref_cube[1], 0, 4)) // CP
&& cube_match(array_slice($cube[2], 0, 4), array_slice($ref_cube[2], 0, 4)) // CO
&& cube_match(array_slice($cube[3], 0, 4), array_slice($ref_cube[3], 0, 4)); // EP
break;
case 16: // ZBLL-H
$match = cube_match(array_slice($cube[1], 0, 4), array_slice($ref_cube[1], 0, 4)) // CP
&& cube_match(array_slice($cube[2], 0, 4), array_slice($ref_cube[2], 0, 4)) // CO
&& cube_match(array_slice($cube[3], 0, 4), array_slice($ref_cube[3], 0, 4)); // EP
break;
case 17: // ZBLL-Pi
$match = cube_match(array_slice($cube[1], 0, 4), array_slice($ref_cube[1], 0, 4)) // CP
&& cube_match(array_slice($cube[2], 0, 4), array_slice($ref_cube[2], 0, 4)) // CO
&& cube_match(array_slice($cube[3], 0, 4), array_slice($ref_cube[3], 0, 4)); // EP
break;
case 18: // ZBLL-S
$match = cube_match(array_slice($cube[1], 0, 4), array_slice($ref_cube[1], 0, 4)) // CP
&& cube_match(array_slice($cube[2], 0, 4), array_slice($ref_cube[2], 0, 4)) // CO
&& cube_match(array_slice($cube[3], 0, 4), array_slice($ref_cube[3], 0, 4)); // EP
break;
case 19: // ZBLL-As
$match = cube_match(array_slice($cube[1], 0, 4), array_slice($ref_cube[1], 0, 4)) // CP
&& cube_match(array_slice($cube[2], 0, 4), array_slice($ref_cube[2], 0, 4)) // CO
&& cube_match(array_slice($cube[3], 0, 4), array_slice($ref_cube[3], 0, 4)); // EP
break;
}
//if($match) println("r:$r true");
//else println("r:$r false");
//print_r2($cube[1]);
//print_r2($cube[3]);
// If no match found rotate cube and incrament rotation counter
if(!$match){
$cube = prod($cube, $CUBIE_MOVES[move_id('y')], 1);
$r++;
}
}
if($match) break;
}
// Rotation required is the inverse of rotations used to match case
if($r > 0) $alg = "y".$ALG_POW[3 - $r].$alg;
return $alg;
}
// Returns the location of the FR edge for ELS
function els_FR($cube){
global $FR;
$frp = 0; // assuming its in position
for($j = 0; $j < 4; $j++){ if($cube[3][$j] == $FR){ $frp = $i + 1; break; }}
return $frp;
}
// TODO: This function failes on alg... x' U' R U L' U2 R' U' L' U' L2 u r2 U' z ... part of ZBLL-PI, or H
// U' l2 u R2 U' R' U' L' U2 R' U L U' ... from ZBLL-PI
// Returns true if the cube state is a member of the given group
function is_member($cube, $group_id){
//echo "is member of? $group_id :";
//printcube($cube, 3);
global $CUBIE_MOVES;
// Check cube from all y rotation angles
for($i = 0; $i < 4; $i++){
//println("|".$cube[2][0].", ".$cube[2][1].", ".$cube[2][2].", ".$cube[2][3]."|");
//printcube($cube, 3);
for($j = 0; $j < 4; $j++){
if(is_member_strict($cube, $group_id)) return true;
// Rotate cube
$cube = prod($cube, $CUBIE_MOVES[move_id('y')], 1);
}
// Rotate U-Layer
$cube = prod($cube, $CUBIE_MOVES[move_id('U')], 1);
}
return false;
}
// Returns true if the cube state is a member of the given group when AUF is allowed
function is_member_auf($cube, $group_id){
//echo "is member of? $group_id :";
//printcube($cube, 3);
global $CUBIE_MOVES;
// Check cube from all auf rotation angles
for($i = 0; $i < 4; $i++){
//println("|".$cube[2][0].", ".$cube[2][1].", ".$cube[2][2].", ".$cube[2][3]."|");
//printcube($cube, 3);
if(is_member_strict($cube, $group_id)) return true;
// Rotate U-Layer
$cube = prod($cube, $CUBIE_MOVES[move_id('U')], 1);
}
return false;
}
function is_member_strict($cube, $group_id){
global $VCUBE;
switch($group_id){
case 1: if(cube_match($cube, $VCUBE['2OFL'] )) return true; break; // OLL
case 2: if(cube_match($cube, $VCUBE['2O'] )) return true; break; // PBL
case 3: if(cube_match($cube, $VCUBE['2FL'] )) return true; break; // CLL
case 4: if(cube_match($cube, $VCUBE['F2L'] )) return true; break; // OLL
case 5: if(cube_match($cube, $VCUBE['F2L_OLL'] )) return true; break; // PLL
case 6: if(cube_match($cube, $VCUBE['F2L'] )) return true; break; // CLL
case 7: if(cube_match($cube, $VCUBE['F2L_CLL'] )) return true; break; // ELL
case 8: if(cube_match($cube, $VCUBE['F2B'] )) return true; break; // CMLL
case 9: if(cube_match($cube, $VCUBE['F2L_OCLL'])) return true; break; // COLL
case 10: if(cube_match($cube, $VCUBE['F2L_OCLL'])) return true; break; // ZBLL
case 11: if(cube_match($cube, $VCUBE['F2LS'] )) return true; break; // ELS
case 12: if(cube_match($cube, $VCUBE['F2LS_EO'] )) return true; break; // CLS
case 13: if(cube_match($cube, $VCUBE['F2L_OCLL_T'])) return true; break; // ZBLL-T
case 14: if(cube_match($cube, $VCUBE['F2L_OCLL_U'])) return true; break; // ZBLL-U
case 15: if(cube_match($cube, $VCUBE['F2L_OCLL_L'])) return true; break; // ZBLL-L
case 16: if(cube_match($cube, $VCUBE['F2L_OCLL_H'])) return true; break; // ZBLL-H
case 17: if(cube_match($cube, $VCUBE['F2L_OCLL_PI'])) return true; break; // ZBLL-PI
case 18: if(cube_match($cube, $VCUBE['F2L_OCLL_S'])) return true; break; // ZBLL-S
case 19: if(cube_match($cube, $VCUBE['F2L_OCLL_AS'])) return true; break; // ZBLL-AS
}
return false;
}
// Returns a value uniquely identifying this cube state in this group
function cube_state($cube, $group_id){
switch($group_id){
case 1: return encode_o(array_slice($cube[2], 0, 3), 3); // CO (2x2 OLL)
case 2: return encode_p($cube[1]); // CP (all corners) (PBL)
case 3: return encode_o(array_slice($cube[2], 0, 3), 3) // CO (2x2 CLL)
+ encode_p(array_slice($cube[1], 0, 4)) * 27; // CP
case 4: return encode_o(array_slice($cube[2], 0, 3), 3) // CO (OLL)
+ encode_o(array_slice($cube[4], 0, 3), 2) * 27; // EO (* 3^3)
case 5: return encode_p(array_slice($cube[1], 0, 4), 3) // CP (PLL)
+ encode_p(array_slice($cube[3], 0, 4)) * 24; // EO (* 4!)
case 6: return encode_o(array_slice($cube[2], 0, 3), 3) // CO (CLL)
+ encode_p(array_slice($cube[1], 0, 4)) * 27; // CP
case 7: return encode_o(array_slice($cube[4], 0, 3), 2) // EO (ELL)
+ encode_p(array_slice($cube[3], 0, 4)) * 8; // EP
case 8: return encode_o(array_slice($cube[2], 0, 3), 3) // CO (CMLL)
+ encode_p(array_slice($cube[1], 0, 4)) * 27; // CP
case 9: return encode_o(array_slice($cube[2], 0, 3), 3) // CO (COLL)
+ encode_p(array_slice($cube[1], 0, 4)) * 27; // CP
case 10: return encode_o(array_slice($cube[2], 0, 3), 3) // CO (ZBLL)
+ encode_p(array_slice($cube[1], 0, 4)) * 27 // CP
+ encode_p(array_slice($cube[3], 0, 4)) * 27 * 24; // EP
case 11: // ELS
// This must encode orientation of the 4 top edges (fifth is determined by other 4)
// along with the position of the FR edge
return encode_o(array_slice($cube[4], 0, 4), 2)
+ els_FR($cube) * 16; // EO(5 edges) + position of FR
case 12: // CLS must track the orientation of the 5 corners (determined by o of 4 top ones)
return encode_o(array_slice($cube[2], 0, 4), 3); // CO
case 13: return encode_o(array_slice($cube[2], 0, 3), 3) // CO (ZBLL-T)
+ encode_p(array_slice($cube[1], 0, 4)) * 27 // CP
+ encode_p(array_slice($cube[3], 0, 4)) * 27 * 24; // EP
case 14: return encode_o(array_slice($cube[2], 0, 3), 3) // CO (ZBLL-U)
+ encode_p(array_slice($cube[1], 0, 4)) * 27 // CP
+ encode_p(array_slice($cube[3], 0, 4)) * 27 * 24; // EP
case 15: return encode_o(array_slice($cube[2], 0, 3), 3) // CO (ZBLL-L)
+ encode_p(array_slice($cube[1], 0, 4)) * 27 // CP
+ encode_p(array_slice($cube[3], 0, 4)) * 27 * 24; // EP
case 16: return encode_o(array_slice($cube[2], 0, 3), 3) // CO (ZBLL-Pi)
+ encode_p(array_slice($cube[1], 0, 4)) * 27 // CP
+ encode_p(array_slice($cube[3], 0, 4)) * 27 * 24; // EP
case 17: return encode_o(array_slice($cube[2], 0, 3), 3) // CO (ZBLL-H)
+ encode_p(array_slice($cube[1], 0, 4)) * 27 // CP
+ encode_p(array_slice($cube[3], 0, 4)) * 27 * 24; // EP
case 18: return encode_o(array_slice($cube[2], 0, 3), 3) // CO (ZBLL-S)
+ encode_p(array_slice($cube[1], 0, 4)) * 27 // CP
+ encode_p(array_slice($cube[3], 0, 4)) * 27 * 24; // EP
case 19: return encode_o(array_slice($cube[2], 0, 3), 3) // CO (ZBLL-AS)
+ encode_p(array_slice($cube[1], 0, 4)) * 27 // CP
+ encode_p(array_slice($cube[3], 0, 4)) * 27 * 24; // EP
}
return -1;
}
// Returs the cube-state the given alg solves
function case_cube($alg){
global $SOLVED_CUBE, $F2L_CUBE, $CUBIE_MOVES;
// Apply inverse to get state which alg solves
$alg = invert_alg($alg);
$cube = array_copy($SOLVED_CUBE);
return apply_alg($alg, $cube);
}
// Returns a set of case cubes representing the state of the
// cube the alg solves, given the rotation was applied first
function case_cubes($alg, $prerot){
global $SOLVED_CUBE;
// Apply inverse to get state which alg solves
$alg = invert_alg($alg);
foreach($prerot as $i => $rtn){
$cubes[$i] = apply_alg($alg.invert_alg($rtn), array_copy($SOLVED_CUBE));
}
return $cubes;
}
// Returns a set of case cubes representing the state of the
// cube the alg solves, given the rotation was applied last
function case_cubes2($alg, $postrot){
global $SOLVED_CUBE;
// Apply inverse to get state which alg solves
$alg = invert_alg($alg);
foreach($postrot as $i => $rtn){
$cubes[$i] = apply_alg(invert_alg($rtn).$alg, array_copy($SOLVED_CUBE));
}
return $cubes;
}
// Returns the move required to rotate the cube to an upright position
function upright($cube){
global $U, $R, $F, $D, $L, $B, $CUBIE_MOVES;
// search for U face centre
$upos = 0;
foreach($cube[0] as $i => $c){
if($c == $U){
$upos = $i;
break;
}
}
$move = "";
switch($upos){
case $R : $move = "z'"; break;
case $L : $move = "z"; break;
case $F : $move = "x"; break;
case $B : $move = "x'"; break;
case $D : $move = "x2"; break;
}
return $move;
}
// Convert cubie cube to face cube, using the default facelet identifiers
function face_cube($cube, $dim){
// Construct default facelet id scheme
for($f = 0; $f < 6; $f++){
for($i = 0; $i < $dim; $i++){
for($j = 0; $j < $dim; $j++) $fd .= $f;
}
}
return facelet_cube($cube, $dim, $fd);
}
// Convert cubie cube to facelet cube mapping each facelet
// to the given facelet id sequence
function facelet_cube($cube, $d, $fi){
global $U, $R, $F, $D, $L, $B;
// Facelet constants
// Dimension/2
$h = (int)($d/2);
// Dimension squared
$s = $d * $d;
// Half of dimension squared
$m = (int)($s/2);
// Map centre positions to facelet ids
$mfid = Array($fi[$U*$s+$m], $fi[$R*$s+$m], $fi[$F*$s+$m], $fi[$D*$s+$m], $fi[$L*$s+$m], $fi[$B*$s+$m]);
// Map the corner positions to facelet ids
$cfid = Array(
Array($fi[ ($U+1)*$s-1], $fi[ $R*$s], $fi[ $F*$s+$d-1]),
Array($fi[($U+1)*$s-$d], $fi[ $F*$s], $fi[ $L*$s+$d-1]),
Array($fi[ $U*$s], $fi[ $L*$s], $fi[ $B*$s+$d-1]),
Array($fi[ $U*$s+$d-1], $fi[ $B*$s], $fi[ $R*$s+$d-1]),
Array($fi[ $D*$s+$d-1], $fi[($F+1)*$s-1], $fi[($R+1)*$s-$d]),
Array($fi[ $D*$s], $fi[($L+1)*$s-1], $fi[($F+1)*$s-$d]),
Array($fi[($D+1)*$s-$d], $fi[($B+1)*$s-1], $fi[($L+1)*$s-$d]),
Array($fi[ ($D+1)*$s-1], $fi[($R+1)*$s-1], $fi[($B+1)*$s-$d]));
// Map the edge positions to facelet ids
$efid = Array(
Array($fi[$U*$s+$m+$h], $fi[ $R*$s+$h]), Array($fi[($U+1)*$s-1-$h], $fi[ $F*$s+$h]),
Array($fi[$U*$s+$m-$h], $fi[ $L*$s+$h]), Array($fi[ $U*$s+$h], $fi[ $B*$s+$h]),
Array($fi[$D*$s+$m+$h], $fi[($R+1)*$s-1-$h]), Array($fi[ $D*$s+$h], $fi[($F+1)*$s-1-$h]),
Array($fi[$D*$s+$m-$h], $fi[($L+1)*$s-1-$h]), Array($fi[($D+1)*$s-1-$h], $fi[($B+1)*$s-1-$h]),
Array($fi[$F*$s+$m+$h], $fi[ $R*$s+$m-$h]), Array($fi[ $F*$s+$m-$h], $fi[ $L*$s+$m+$h]),
Array($fi[$B*$s+$m+$h], $fi[ $L*$s+$m-$h]), Array($fi[ $B*$s+$m-$h], $fi[ $R*$s+$m+$h]));
//print_r($efid);
/*
// Map the corner positions to facelets
$ccol = Array(
Array($U, $R, $F), Array($U, $F, $L), Array($U, $L, $B), Array($U, $B, $R),
Array($D, $F, $R), Array($D, $L, $F), Array($D, $B, $L), Array($D, $R, $B));
// Map the edge positions to facelets
$ecol = Array(
Array($U, $R), Array($U, $F), Array($U, $L),
Array($U, $B), Array($D, $R), Array($D, $F),
Array($D, $L), Array($D, $B), Array($F, $R),
Array($F, $L), Array($B, $L), Array($B, $R));
*/
// Map of centre facelet positions
$mpos = Array($U*$s+$m, $R*$s+$m, $F*$s+$m, $D*$s+$m, $L*$s+$m, $B*$s+$m);
// Map of corner facelet positions (for any dimensoin of cube)
$cpos = Array(
Array( ($U+1)*$s-1, $R*$s, $F*$s+$d-1), Array(($U+1)*$s-$d, $F*$s, $L*$s+$d-1),
Array( $U*$s, $L*$s, $B*$s+$d-1), Array( $U*$s+$d-1, $B*$s, $R*$s+$d-1),
Array( $D*$s+$d-1, ($F+1)*$s-1, ($R+1)*$s-$d), Array( $D*$s, ($L+1)*$s-1, ($F+1)*$s-$d),
Array(($D+1)*$s-$d, ($B+1)*$s-1, ($L+1)*$s-$d), Array( ($D+1)*$s-1, ($R+1)*$s-1, ($B+1)*$s-$d));
// Map edge facelet positions (for any dimensoin)
$epos = Array(
Array($U*$s+$m+$h, $R*$s+$h), Array(($U+1)*$s-1-$h, $F*$s+$h), Array($U*$s+$m-$h, $L*$s+$h),
Array( $U*$s+$h, $B*$s+$h), Array( $D*$s+$m+$h, ($R+1)*$s-1-$h), Array( $D*$s+$h, ($F+1)*$s-1-$h),
Array($D*$s+$m-$h, ($L+1)*$s-1-$h), Array(($D+1)*$s-1-$h, ($B+1)*$s-1-$h), Array($F*$s+$m+$h, $R*$s+$m-$h),
Array($F*$s+$m-$h, $L*$s+$m+$h), Array( $B*$s+$m+$h, $L*$s+$m-$h), Array($B*$s+$m-$h, $R*$s+$m+$h));
// Corners
for($i = 0; $i < 8; $i++){
$j = $cube[1][$i]; // cornercubie with index j is at
// cornerposition with index i
$o = $cube[2][$i]; // Orientation of this cubie
for($n = 0; $n < 3; $n++) $fo[$cpos[$i][($n + $o) % 3]] = $cfid[$j][$n];
}
//print_r($mfid);
//echo "\n<br/>";
// Pieces only applicable to odd sized puzzles
if($d % 2 == 1){
// Centers
for($i = 0; $i < 6; $i++){
//echo "\n<br/>".$cube[0][$i];
$fo[$mpos[$i]] = $mfid[$cube[0][$i]];
}
// Centre edges
for($i = 0; $i < 12; $i++){
$j = $cube[3][$i]; // edgecubie with index j is at edgeposition with index i
$o = $cube[4][$i]; // Orientation of this cubie
for($n = 0; $n < 2; $n++) $fo[$epos[$i][($n + $o) % 2]] = $efid[$j][$n];
}
}
//print_r( $fo);
return $fo;
}
// Convert cubie cube to letter cube (letters representing facelets)
function letter_cube($cube, $dim){
global $FACE_NAMES;
$fc = face_cube($cube, $dim);
for($i = 0; $i < count($fc); $i++){
$lc[$i] = $FACE_NAMES[$fc[$i]];
}
return implode($lc);
}
// Convert cubie cube to colour cube
function col_cube($cube, $dim){
// Sheme mapping
$FACE_COL = Array(
'u' => 'y',
'r' => 'r',
'f' => 'b',
'd' => 'w',
'l' => 'o',
'b' => 'g');
$fc = face_cube($cube, $dim);
// Translate face defs into colour defs
for($i = 0; $i < strlen($fc); $i++){
$col .= $FACE_COL[$fc[$i]];
}
return $col;
}
// Print a cube to screen for debugging
function printcube($cube, $dim){
$fc = letter_cube($cube, $dim);
println("<img src=\"visualcube.php?fmt=gif&fd=$fc\">");
}
// Applys an alg to the given cube
function apply_alg($alg, $cube){
global $CUBIE_MOVES;
$i = 0;
$len = strlen($alg);
while($i < $len){
$move = move_id(substr($alg, $i, 1));
if($move >= 0){
$pow = move_pow(substr($alg, $i+1, 1));
if($pow > 1) $i++;
// Make the move
$cube = prod($cube, $CUBIE_MOVES[$move], $pow);
}
$i++;
}
return $cube;
}
// Formats an inputed alg to remove dissallowed characters and standardise notation
function format_alg($moves){
// Remove characters not allowed in an alg
$r = preg_replace('/[^UDLRFBudlrfbMESxyzw\'`23]/', '', $moves);
$r = preg_replace('/[3`]/', "'", $r); // Replace 3 or ` with a '
$r = preg_replace('/2\'|\'2/', "2", $r); // Replace 2' or '2 with a 2
// Fix wide notation
if(preg_match('/w/', $r)){
$r = preg_replace('/Uw/', 'u', $r);
$r = preg_replace('/Rw/', 'r', $r);
$r = preg_replace('/Fw/', 'f', $r);
$r = preg_replace('/Dw/', 'd', $r);
$r = preg_replace('/Lw/', 'l', $r);
$r = preg_replace('/Bw/', 'b', $r);
// now remove any extra w's
$r = preg_replace('/w/', '', $r);
}
// Merge multiple moves/rotations of same face
//println( "init moves=|$moves|");
return compress_alg($r);
//println("compressed moves=|$moves|");
}
// Removes all initial and final rotations from a cube
function trim_rotations($alg, $is_ll){
//echo "isll?$is_ll";
// Remove AUFs if its an LL alg
if($is_ll) $alg = remove_auf($alg);
// Strip all initial rotations
$alg = preg_replace('/^([xyz][2\']?)+/', '', $alg);
// Strip all final rotations
$alg = preg_replace('/([xyz][2\']?)+$/', '', $alg);
//echo "moves=|$moves|";
return $alg;
}
// Removes AUFs and replaces them with y rotations
function remove_auf($alg){
$n = strlen($alg);
for($i = 0; $i < $n; $i++){
$c = substr($alg, $i, 1);
if($c == 'U') $alg[$i] = 'y';
else if(preg_match('/[^yU2\'\s]/', $c)) // anything other than y and U turns are no longer aufs
break;
}
for($i = $n - 1; $i > -1; $i--){
$c = substr($alg, $i, 1);
if($c == 'U') $alg[$i] = 'y';
else if(preg_match('/[^yU2\'\s]/', $c)) // anything other than y and U turns are no longer aufs
break;
}
return compress_alg($alg);
}
// Inserts spaces in an alg for display
function expand_alg($alg){
$n = strlen($alg);
$i = 1;
$exp = substr($alg, 0, 1);
while($i < $n){
$c = substr($alg, $i, 1);
if(move_id($c) != -1) $exp .= " ";
$exp .= $c;
$i++;
}
return $exp;
}
// Merges unnecessery repeated moves of the same face
function compress_alg($alg){
global $ALG_POW;
$merge_done = true;
while($merge_done && strlen($alg) > 1){
$n = strlen($alg);
$i = 0;
$merge_done = false;
while($i < $n){
$move = $alg[$i];
if(move_id($move) != -1){
$pow = 1;
if($i < $n -1) $pow = move_pow($alg[$i + 1]);
if($pow > 1) $i++;
// If moves the same, then simply add up powers
if($lmove == $move){
$lpow += $pow;
$merge_done = true;
}
// Otherwise, last move can be added to alg
else{
$lpow = $lpow % 4;
if($lpow > 0) $malg .= $lmove . $ALG_POW[$lpow-1];
$lpow = $pow;
$lmove = $move;
}
}
$i++;
}
// Add final move
$lpow = $lpow % 4;
if($lpow > 0) $malg .= $lmove . $ALG_POW[$lpow-1];
$alg = $malg;
$malg = null;
$lmove = null;
$lpow = null;
}
return $alg;
}
// Inverts an NxN cube algorithm
function invert_alg($alg){
global $ALG_POW;
$inv = "";
$pow = 1;
$pre = '';
$i = strlen($alg) - 1;
while($i >= 0){
$c = substr($alg, $i, 1);
$mv = fcs_move_id($c);
if($mv != -1){
// Retrive layer depth
if($i > 0){
$pre = substr($alg, $i-1, 1);
if(!is_numeric($pre) || ($i > 1
&& fcs_move_id(substr($alg, $i-2, 1)) != -1))
$pre = '';
else $i--;
}
// Invert and add the move
$inv .= $pre . $c . $ALG_POW[3 - $pow] . ' ';
$pow = 1; $pre = '';
}
else $pow = move_pow(substr($alg, $i, 1));
$i--;
}
return $inv;
}
// Returns an array of algorithm statistics
// including, STM, HTM, QTM and GEN
function alg_stats($alg){
$n = strlen($alg);
$i = 0;
$gen = Array(0, 0, 0, 0, 0, 0, 0, 0, 0);
while($i < $n){
$move = move_id(substr($alg, $i, 1));
if($move != -1){
$pow = 1;
if($i < $n -1) $pow = move_pow(substr($alg, $i + 1, 1));
// If move not a rotation
if($move <= 14){
$stm++;
$htm++;
$qtm_ = 1;
// If its a slice move
if($move >= 12 && $move <=14){
$htm++;
$qtm_ = 2;
}
if($pow == 2) $qtm_ *= 2;
$qtm += $qtm_;
$gen[$move >= 6 ? $move - 6 : $move] = 1;
}
}
$i++;
}
$gn = 0;
foreach($gen as $g) $gn += $g;
return Array($stm, $htm, $qtm, $gn);
}
// Encode orientation
function encode_o($data, $mod){
$o = 0;
for($i = 0; $i < count($data); $i++){
$o = $o * $mod + $data[$i];
}
return $o;
}
// Encode permutation
function encode_p($data){
$p = 0;
$n = count($data);
for($i = 0; $i < $n - 1; $i++){
$p = $p * ($n - $i + 1);
for($j = $i + 1; $j < $n; $j++){
if($data[$i] > $data[$j])
$p += 1;
}
}
return $p;
}
// Returns whether the cubes match
// Entries of -1 are counted as matching
function cube_match($cube1, $cube2){
for($i = 0; $i < count($cube1); $i++){
if(is_array($cube1[$i])){
if(!cube_match($cube1[$i], $cube2[$i])) return false;
}else if(!(
$cube1[$i] == $cube2[$i]
|| $cube1[$i] == -1
|| $cube2[$i] == -1))
return false;
}
return true;
}
// Permutes and orients cube1 by cube2 n times
function prod($cube1, $cube2, $n){
for($i = 0; $i < $n; $i++){
// Centres
$tmp = Array();
for($m = 0; $m < 6; $m++){
// Permute center
$tmp[0][$m] = $cube1[0][$cube2[0][$m]];
}
// Corners
for($c = 0; $c < 8; $c++){
// Permute corner
$tmp[1][$c] = $cube1[1][$cube2[1][$c]];
// Orient corner
$tmp[2][$c] = ($cube1[2][$cube2[1][$c]] + $cube2[2][$c]) % 3;
}
// Edges
for($e = 0; $e < 12; $e++){
// Permute edge
$tmp[3][$e] = $cube1[3][$cube2[3][$e]];
// Orient edge
$tmp[4][$e] = ($cube1[4][$cube2[3][$e]] + $cube2[4][$e]) % 2;
}