-
Notifications
You must be signed in to change notification settings - Fork 66
/
label_images.py
152 lines (129 loc) · 4.99 KB
/
label_images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# from AUTOMATC1111
# maybe modified by Nyanko Lepsoni
# modified by crosstyan
import os.path
import re
import tempfile
import argparse
import glob
import zipfile
import deepdanbooru as dd
import tensorflow as tf
import numpy as np
from basicsr.utils.download_util import load_file_from_url
from PIL import Image
from tqdm import tqdm
re_special = re.compile(r"([\\()])")
def get_deepbooru_tags_model(model_path: str):
if not os.path.exists(os.path.join(model_path, "project.json")):
is_abs = os.path.isabs(model_path)
if not is_abs:
model_path = os.path.abspath(model_path)
load_file_from_url(
r"https://github.com/KichangKim/DeepDanbooru/releases/download/v3-20211112-sgd-e28/deepdanbooru-v3-20211112-sgd-e28.zip",
model_path,
)
with zipfile.ZipFile(
os.path.join(model_path, "deepdanbooru-v3-20211112-sgd-e28.zip"), "r"
) as zip_ref:
zip_ref.extractall(model_path)
os.remove(os.path.join(model_path, "deepdanbooru-v3-20211112-sgd-e28.zip"))
tags = dd.project.load_tags_from_project(model_path)
model = dd.project.load_model_from_project(model_path, compile_model=False)
return model, tags
def get_deepbooru_tags_from_model(
model,
tags,
pil_image,
threshold,
alpha_sort=False,
use_spaces=True,
use_escape=True,
include_ranks=False,
):
width = model.input_shape[2]
height = model.input_shape[1]
image = np.array(pil_image)
image = tf.image.resize(
image,
size=(height, width),
method=tf.image.ResizeMethod.AREA,
preserve_aspect_ratio=True,
)
image = image.numpy() # EagerTensor to np.array
image = dd.image.transform_and_pad_image(image, width, height)
image = image / 255.0
image_shape = image.shape
image = image.reshape((1, image_shape[0], image_shape[1], image_shape[2]))
y = model.predict(image)[0]
result_dict = {}
for i, tag in enumerate(tags):
result_dict[tag] = y[i]
unsorted_tags_in_theshold = []
result_tags_print = []
for tag in tags:
if result_dict[tag] >= threshold:
if tag.startswith("rating:"):
continue
unsorted_tags_in_theshold.append((result_dict[tag], tag))
result_tags_print.append(f"{result_dict[tag]} {tag}")
# sort tags
result_tags_out = []
sort_ndx = 0
if alpha_sort:
sort_ndx = 1
# sort by reverse by likelihood and normal for alpha, and format tag text as requested
unsorted_tags_in_theshold.sort(key=lambda y: y[sort_ndx], reverse=(not alpha_sort))
for weight, tag in unsorted_tags_in_theshold:
tag_outformat = tag
if use_spaces:
tag_outformat = tag_outformat.replace("_", " ")
if use_escape:
tag_outformat = re.sub(re_special, r"\\\1", tag_outformat)
if include_ranks:
tag_outformat = f"({tag_outformat}:{weight:.3f})"
result_tags_out.append(tag_outformat)
# print("\n".join(sorted(result_tags_print, reverse=True)))
return ", ".join(result_tags_out)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--path", type=str, default=".")
parser.add_argument("--threshold", type=int, default=0.75)
parser.add_argument("--alpha_sort", type=bool, default=False)
parser.add_argument("--use_spaces", type=bool, default=True)
parser.add_argument("--use_escape", type=bool, default=True)
parser.add_argument("--model_path", type=str, default="")
parser.add_argument("--include_ranks", type=bool, default=False)
args = parser.parse_args()
global model_path
model_path:str
if args.model_path == "":
script_path = os.path.realpath(__file__)
default_model_path = os.path.join(os.path.dirname(script_path), "deepdanbooru-models")
# print("No model path specified, using default model path: {}".format(default_model_path))
model_path = default_model_path
else:
model_path = args.model_path
types = ('*.jpg', '*.png', '*.jpeg', '*.gif', '*.webp', '*.bmp')
files_grabbed = []
for files in types:
files_grabbed.extend(glob.glob(os.path.join(args.path, files)))
# print(glob.glob(args.path + files))
model, tags = get_deepbooru_tags_model(model_path)
for image_path in tqdm(files_grabbed, desc="Processing"):
image = Image.open(image_path).convert("RGB")
prompt = get_deepbooru_tags_from_model(
model,
tags,
image,
args.threshold,
alpha_sort=args.alpha_sort,
use_spaces=args.use_spaces,
use_escape=args.use_escape,
include_ranks=args.include_ranks,
)
image_name = os.path.splitext(os.path.basename(image_path))[0]
txt_filename = os.path.join(args.path, f"{image_name}.txt")
# print(f"writing {txt_filename}: {prompt}")
with open(txt_filename, 'w') as f:
f.write(prompt)