forked from tech-srl/code2seq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
preprocess.py
121 lines (99 loc) · 6.02 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import pickle
from argparse import ArgumentParser
import numpy as np
import common
'''
This script preprocesses the data from MethodPaths. It truncates methods with too many contexts,
and pads methods with less paths with spaces.
'''
def save_dictionaries(dataset_name, subtoken_to_count, node_to_count, target_to_count, max_contexts, num_examples):
save_dict_file_path = '{}.dict.c2s'.format(dataset_name)
with open(save_dict_file_path, 'wb') as file:
pickle.dump(subtoken_to_count, file)
pickle.dump(node_to_count, file)
pickle.dump(target_to_count, file)
pickle.dump(max_contexts, file)
pickle.dump(num_examples, file)
print('Dictionaries saved to: {}'.format(save_dict_file_path))
def process_file(file_path, data_file_role, dataset_name, max_contexts, max_data_contexts):
sum_total = 0
sum_sampled = 0
total = 0
max_unfiltered = 0
max_contexts_to_sample = max_data_contexts if data_file_role == 'train' else max_contexts
output_path = '{}.{}.c2s'.format(dataset_name, data_file_role)
with open(output_path, 'w') as outfile:
with open(file_path, 'r') as file:
for line in file:
parts = line.rstrip('\n').split(' ')
target_name = parts[0]
contexts = parts[1:]
if len(contexts) > max_unfiltered:
max_unfiltered = len(contexts)
sum_total += len(contexts)
if len(contexts) > max_contexts_to_sample:
contexts = np.random.choice(contexts, max_contexts_to_sample, replace=False)
sum_sampled += len(contexts)
csv_padding = " " * (max_data_contexts - len(contexts))
total += 1
outfile.write(target_name + ' ' + " ".join(contexts) + csv_padding + '\n')
print('File: ' + data_file_path)
print('Average total contexts: ' + str(float(sum_total) / total))
print('Average final (after sampling) contexts: ' + str(float(sum_sampled) / total))
print('Total examples: ' + str(total))
print('Max number of contexts per word: ' + str(max_unfiltered))
return total
def context_full_found(context_parts, word_to_count, path_to_count):
return context_parts[0] in word_to_count \
and context_parts[1] in path_to_count and context_parts[2] in word_to_count
def context_partial_found(context_parts, word_to_count, path_to_count):
return context_parts[0] in word_to_count \
or context_parts[1] in path_to_count or context_parts[2] in word_to_count
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument("-trd", "--train_data", dest="train_data_path",
help="path to training data file", required=True)
parser.add_argument("-ted", "--test_data", dest="test_data_path",
help="path to test data file", required=True)
parser.add_argument("-vd", "--val_data", dest="val_data_path",
help="path to validation data file", required=True)
parser.add_argument("-mc", "--max_contexts", dest="max_contexts", default=200,
help="number of max contexts to keep in test+validation", required=False)
parser.add_argument("-mdc", "--max_data_contexts", dest="max_data_contexts", default=1000,
help="number of max contexts to keep in the dataset", required=False)
parser.add_argument("-svs", "--subtoken_vocab_size", dest="subtoken_vocab_size", default=186277,
help="Max number of source subtokens to keep in the vocabulary", required=False)
parser.add_argument("-tvs", "--target_vocab_size", dest="target_vocab_size", default=26347,
help="Max number of target words to keep in the vocabulary", required=False)
parser.add_argument("-sh", "--subtoken_histogram", dest="subtoken_histogram",
help="subtoken histogram file", metavar="FILE", required=True)
parser.add_argument("-nh", "--node_histogram", dest="node_histogram",
help="node_histogram file", metavar="FILE", required=True)
parser.add_argument("-th", "--target_histogram", dest="target_histogram",
help="target histogram file", metavar="FILE", required=True)
parser.add_argument("-o", "--output_name", dest="output_name",
help="output name - the base name for the created dataset", required=True, default='data')
args = parser.parse_args()
train_data_path = args.train_data_path
test_data_path = args.test_data_path
val_data_path = args.val_data_path
subtoken_histogram_path = args.subtoken_histogram
node_histogram_path = args.node_histogram
subtoken_to_count = common.Common.load_histogram(subtoken_histogram_path,
max_size=int(args.subtoken_vocab_size))
node_to_count = common.Common.load_histogram(node_histogram_path,
max_size=None)
target_to_count = common.Common.load_histogram(args.target_histogram,
max_size=int(args.target_vocab_size))
print('subtoken vocab size: ', len(subtoken_to_count))
print('node vocab size: ', len(node_to_count))
print('target vocab size: ', len(target_to_count))
num_training_examples = 0
for data_file_path, data_role in zip([test_data_path, val_data_path, train_data_path], ['test', 'val', 'train']):
num_examples = process_file(file_path=data_file_path, data_file_role=data_role, dataset_name=args.output_name,
max_contexts=int(args.max_contexts), max_data_contexts=int(args.max_data_contexts))
if data_role == 'train':
num_training_examples = num_examples
save_dictionaries(dataset_name=args.output_name, subtoken_to_count=subtoken_to_count,
node_to_count=node_to_count, target_to_count=target_to_count,
max_contexts=int(args.max_data_contexts), num_examples=num_training_examples)