forked from LiKev12/CSE544T-Project-TextBugger
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ToDo.txt
119 lines (66 loc) · 1.53 KB
/
ToDo.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
TODO: 04/15
- Figure 3:
> Plot of word importances in a sentence (easy) KL
- Table 2:
> CNN Model
> LSTM Model
> FGSM+NNS
> DeepFool+NNS
- Table 3:
> DeepWordBug
> Various target models (let's pick 5):
> Google Cloud NLP
> IBM Watson
> Microsoft Azure
> Amazon AWS
> Facebook fastText
- Figure 4:
> Metrics vs. # of words in document
> Success Rate
> Change in Score
> Time
- Figure 5:
> Blackbox model evaluation
> Attacks against:
> Google NLP
> IBM Watson
> Microsoft Azure
> AWS
> fastText
- Figure 6-9:
> Different similarity metrics
> Edit Distance
> Jaccard Coefficient
> Euclidean Distance
Toxic Content Detection
> Kaggle dataset
> LR, CNN, LSTM models
- KL
> Datasets
>
- RY
03/06/2020
- RY:
> Choose 1 model, 1 attack
> If stuck, start on report
>
>
- KL:
> Jacobian => Whitebox Algo => Random
> Finish glove_imdb, glove_rt
> LSTM ? (Download python3.7)
> Clustering for fast similarity
>
02/28/2020
- Optimize generate_bugs.py to not take so long (maybe precompute the nearest neighbors for each word)
- 3 Baseline algorithms
- Random
- FGSM + NNS
- DeepFool + NNS
- 3 Targeted Models
- LR
- Kim's CNN (Paper 17)
- LSTM (Paper 38) **RY- Sentiment_Analysis/White_Box/Models
- Get Datasets
- IMDB
- Rotten Tomatoes MR