forked from vkosuri/CourseraMachineLearning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgradientDescent.m
38 lines (26 loc) · 1.16 KB
/
gradientDescent.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
%GRADIENTDESCENT Performs gradient descent to learn theta
% theta = GRADIENTDESCENT(X, y, theta, alpha, num_iters) updates theta by
% taking num_iters gradient steps with learning rate alpha
% Initialize some useful values
m = length(y); % number of training examples
J_history = zeros(num_iters, 1);
for iter = 1:num_iters
% ====================== YOUR CODE HERE ======================
% Instructions: Perform a single gradient step on the parameter vector
% theta.
%
% Hint: While debugging, it can be useful to print out the values
% of the cost function (computeCost) and gradient here.
%
predictions = X * theta;
updates = X' * (predictions - y);
theta = theta - alpha * (1/m) * updates;
%theta = theta - alpha * (1/m) * sum(sqerrors) * X;
%theta - (alpha/m) * (X' * (X * theta - y));
%theta = theta - (alpha/m) * (X' * (X * theta - y));
% ============================================================
% Save the cost J in every iteration
J_history(iter) = computeCost(X, y, theta);
end
end