

Response to Decision Proposal 209:
Transition to FAPI 1.0 Advanced Profile

Introduction ... 3
References ... 3
FAPI 2.0 Note ... 3

Decision Proposal Clarifications ... 4
PKCE regardless of Response Type .. 4
JARM Support .. 4

Additional Considerations ... 5
Introduction of PKCE for PAR .. 5
JARM Support for Code Flow ... 5
Dual Response Type Support .. 5
Removal of Encrypted ID Tokens ... 6
Signed Introspection Support ... 6
Disable Refresh Token Cycling .. 6

Impact Analysis .. 7
Question Responses ... 10

1(a) Should Refresh token expiry time be pegged to consent duration? 10
1(b) Should CDR authorisation input parameters be registered or otherwise moved out
of the authorisation request object? ... 10
1(c) Should CDR token response parameters be registered or otherwise moved out of
the parent token endpoint response JSON / ID token JWT? 10
2(a) Should the CDR explicitly define the request_uri must only be used once and
cannot be replayed .. 11
2(b) Should the CDS explicitly define the upper lifetime of the PAR request_uri? 11
2(c) Should the Data Standards make requiring PAR mandatory for all Data Holders
and Data Recipients? .. 11
3(a) Should JARM be supported when response_type is code? 11
3(b) Should the Data Standards require JARM when response_type is code? 12
3(c) Should the CDS mandate that the same kid is not allowed to be used by multiple
keys within a JWKS? ... 12

Alternate Phasing Schedule .. 13
About Biza.io ... 15
About Our Customers ... 15

 3

Introduction
Decision Proposal 209 focuses on the proposal to transition the existing CDR
Information Security Profile (a modified FAPI ID2 derivation using a draft version of
PAR) to be aligned with the FAPI 1.0 Advanced Final profile combined with RFC9126
(the final version of PAR).

As has been our position since the beginning of the CDR implementation Biza.io is
strongly in favour of alignment to international standards. As a member of the OpenID
Foundation and a contributing member of the FAPI Working Group we support the
unmodified adoption of FAPI 1.0 Advanced Final.

Within this feedback we provide:

1. Comments related to the accuracy of the proposal
2. Feedback with regards to phasing schedules
3. Readiness with respect to installations we deliver on behalf of Holders

References
The following documents were used and are referenced during preparation of this
analysis:

Document Name Date (Version) URL
Financial-grade API Security
Profile 1.0 – Part 1: Baseline

March 12, 2021
(Final)

https://openid.net/spec
s/openid-financial-api-
part-1-1_0-final.html

Financial-grade API Security
Profile 1.0 – Part 2: Advanced

March 12, 2021
(Final)

https://openid.net/spec
s/openid-financial-api-
part-2-1_0.html

Financial-grade API: JWT
Secured Authorization
Response Mode for OAuth 2.0
(JARM)

October 17 2018
(Draft-02)

https://openid.net/spec
s/openid-financial-api-
jarm.html

OAuth 2.0 Pushed
Authorization Requests

September 2021
(RFC9126)

https://www.rfc-
editor.org/rfc/rfc9126.tx
t

Proof Key for Code Exchange
by OAuth Public Clients

September 2015
(RFC7636)

https://datatracker.ietf.
org/doc/html/rfc7636

Proposal - should we remove
support for refresh token
rotation from FAPI 2.0

November 11
2021 (Latest
Comment)

https://bitbucket.org/op
enid/fapi/issues/456/pr
oposal-should-we-
remove-support-for

FAPI 2.0 Note
This document refers to “FAPI 2.0” in the broad context of the current approach being
taken by the FAPI Working Group whereby it is more broadly referred to as the FAPI 2
Framework1.

1 https://bitbucket.org/openid/fapi/issues/432/fapi2-trust-framework-structure

 4

Decision Proposal Clarifications
Biza.io wishes to note the following clarifications regarding the Decision Proposal.

PKCE regardless of Response Type
The phasing table (Page 12) contained within the Decision Proposal contains a
reference regarding response_type stating “code id_token (unless supporting
PKCE)”.

We note that according to FAPI 1.0, PKCE is mandatory for all PAR requests
regardless of the response_type in use. As the CDR requires PAR support already,
alignment would implicitly rely upon PKCE being supported at this endpoint to facilitate
FAPI 1.0 Final alignment.

JARM Support
The phasing table (Page 11) specifies that JARM Support is not required however:

FAPI 1.0 states the following in 5.2.2 (2):

shall require

1) the response_type value code id_token, or
2) the response_type value code in conjunction with the

response_mode value jwt;

While 5.2.2.2 states the following:

In addition, if the response_type value code is used in conjunction
with the response_mode value jwt, the authorization server

1) shall create JWT-secured authorization responses as specified in
JARM, Section 4.3.

This has the effect of indicating that response type must be either:

1) code id_token (Hybrid)
2) code with JARM based response_mode of jwt

In essence this means that should the DSB incorporate code flow that JARM support
is required.

 5

Additional Considerations
In addition to the considerations outlined in the Decision Proposal Biza.io raises the
following items for consideration.

Introduction of PKCE for PAR
As noted above PKCE is required for PAR requests to reach alignment with FAPI 1.0.
The Decision Proposal suggests a response_type of code id_token transitioning
to code which appears to tie PKCE adoption to this migration.

PKCE is separate from potential changes to response_type. Instead, PKCE allows
the Data Recipient (Client) to generate a code_verifier which is then transformed
(using the code_challenge_method) into a code_challenge during the
submission of the request (to the PAR endpoint).

After the authorisation flow has completed and during the subsequent submission to
the token endpoint the Data Recipient then submits the previously undisclosed
code_verifier and the Data Holder verifies this aligns with the code_challenge
sent at the beginning of the request.

By implementing PKCE the Holder is able to verify that the Recipient has not had its
code intercepted and used to illegitimately claim tokens – regardless of inadvertent
exposure of PAR request submission or authorisation response.

JARM Support for Code Flow
As noted above FAPI 1.0 essentially makes JARM mandatory for response_type of
code. Consequently, for FAPI 1.0 alignment, it would be mandatory for code flow
adoption.

Biza.io notes that the code flow within the FAPI 2.0 Baseline Profile does not have a
mandatory requirement for JARM based response mode. The primary reason for this is
that the FAPI 2.0 Baseline is not intended to provide message integrity, which JARM
provides to the authorisation code. In contrast the FAPI 2.0 Advanced Profile does
intend to provide message integrity and this is in the form of JARM for code response
type and signed introspection responses.

While signalling such features early would be beneficial it is critical that the DSB
decides whether message integrity (and more broadly non-repudiation) is a continuing
requirement for the CDR. For its part Biza.io recommends that message integrity
should be considered a requirement, as is already the case with the use of code
id_token hybrid flow, and retained in future iterations of the CDR Information Security
Profile.

Dual Response Type Support
The Decision Proposal currently proposes to migrate from code id_token response
type to code only response type. As noted above this would implicitly require JARM
support to reach alignment.

 6

While migrating away from code id_token sets the CDR Standards towards a path
of FAPI 2.0 adoption we believe it may be premature at this stage. Instead, Biza.io
suggests that the DSB consider whether dual response_type support may be
worthwhile and have outlined such an approach in our revised phasing table.

Removal of Encrypted ID Tokens
Biza.io has always questioned the usefulness of encrypted ID Tokens particularly
because the CDR Standards block the return of PI claims on front-channel (from
authorisation endpoint) and the back-channel (token endpoint) is protected by MTLS.

In the live ecosystem Biza.io has experienced race conditions, during time sensitive
operations (ie. time constrained authorisation codes), caused by non-performant
JWKS endpoints (including those of the ACCC CTS) delaying the efficient retrieval of
keys to be used for encrypting ID Tokens

While not explicitly required to achieve FAPI 1.0 alignment we note that this may be an
opportunity to remove encrypted id tokens being required, aligning with essentially all
other international ecosystems and increasing vendor choice for holders as the CDR
enters additional sectors.

Signed Introspection Support
In addition to JARM we note that the other non-breaking change future alignment with
FAPI 2.0 is the support for signed introspection responses. As JARM is now within
scope as part of code we feel it is only natural to raise support for signed introspection
response support as well.

Disable Refresh Token Cycling
Refresh Token Cycling within confidential clients being issued sender-constrained
tokens is recognised as posing no significant security benefit (“security theatre”) while
conversely creating numerous ecosystem interoperability issues during error
conditions.

The FAPI Working Group currently has an issue open2 to explicitly remove support for
refresh token rotation from FAPI 2.0 security profiles. Within the CDR ecosystem
disabling cycling would enable a simplification of the current method of communicating
sharing expiration as the sharing duration could be tied to the refresh token expiration.

2 https://bitbucket.org/openid/fapi/issues/456/proposal-should-we-remove-support-for

Impact Analysis
Biza.io thanks the DSB for providing a list of specific changes to achieve FAPI 1.0 alignment. In order to assist in the decisioning related
to how quickly to migrate we provide the following high level impact analysis of each change.

Item Biza.io Customers Ecosystem Holder Ecosystem Recipient
Request URI Replay
(PAR)

None.
Request URI Replay is
already enforced.

Low.
Most Holders already enforcing.

None.
No recipient is reusing request_uris.

Require PAR None.
We prefer PAR only.

None.
Holders already required to accept
PAR so making it exclusive is
unlikely to be an issue.

Low.
Biza.io believes all Active Recipients
already utilise PAR exclusively.

PKCE Support None.
Biza.io Platform already
supports PKCE.

Medium.
PKCE support depends on Vendor
support.

Medium.
PKCE support is untested by
Recipients however if they don’t
support it their existing
implementation will continue
functioning until it is Mandatory.

Authorisation Code
Reuse

None.
Biza.io Platform already
blocks authorisation code
reuse.

Medium.
A reasonable proportion of Holders
have challenges enforcing code
reuse protections (especially
instant code reuse versus 30
second delay use)

None.
No recipient is reusing authorisation
codes.

Scope Request Support None.
Biza.io Platform will
continue to provide scopes
regardless.

None.
Existing implementations can
remain unchanged.

Low.
Introducing conditional check of
scope presence is likely to be a low
impact change to recipients.

 8

Multi-Brand Support None.
Biza.io Platform already
uses separate issuers per
brand.

Medium.
Biza.io is aware of some
installations which are recycling
key material across brands and/or
using duplicate issuers.

Low.
Recipients are unlikely to be
impacted by this alignment as they
(should) rely upon discovery
documents anyway.

x-fapi-customer-ip-
address support IPv4 and
IPv6

None.
Biza.io Platform accepts
these headers already.

None.
Biza.io is not aware of holders
rejecting these requests.

Low.
Recipients are supplying well-formed
IP addresses already.

Request Object Expiry Low.
Biza.io Platform already
enforces request object
expirations in alignment
with FAPI

Low.
Biza.io believes most holders are
already enforcing expiry.

Low.
Limited reasons why a Recipient
would require a request to not expire
for extended periods.

Content-Type Header
Requirement

None.
Biza.io Platform accepts
both formats.

Low.
We believe there a small number of
holders using string-based header
parsing and rejecting these
requests.

None.
Existing Recipients would be issuing
the specified Content-Type already
to ensure functionality. Existing
implementations would be
unaffected by this change.

Cipher Support None.
Biza.io is comfortable with
the existing ciphers.

None.
Existing Holders already comply
with existing ciphers.

Low.
Recipients would need to support
new ciphers however this is likely to
already be the case.

Ignore Claims outside the
Request Object

None.
Biza.io already ignores
such claims.

Low.
Most existing holders already
ignore claims.

None.
Biza.io believes Recipients are
already in compliance.

(Additional) Remove
Encrypted ID Tokens

None.
Biza.io can alter its
discovery document and

None. Low.

 9

await DCR updates from
Recipients.

Holders can alter their discovery
document and await DCR updates
from Recipients.

Recipients can perform a DCR
Update to disable ID Token
encryption.

(Additional) Require
PKCE

None.
Biza.io Platform already
supports PKCE.

Medium.
PKCE support depends on Vendor
support.

High.
PKCE support is untested by
Recipients and one holder
mandating it will require all recipients
to uplift.

(Additional) Support
code flow with
response_mode of jwt
using JARM.

Medium.
Biza.io Platform does not
currently support JARM
but would do so if it was
supported in the CDR
ecosystem.

Medium.
JARM is not supported by many
vendors.

Medium.
Recipients can continue using hybrid
flow however introducing JARM is
likely a body of work should they
choose to do so.

(Additional) Support
signed introspection
responses.

None.
Biza.io Platform already
supports signed
introspection responses.

Medium.
Signed introspection responses
have varying vendor support

None.
Existing implementations would
continue to receive unsigned
introspection responses.

(Additional) Disable
Refresh Token Cycling

None.
Biza.io Platform does not
currently utilise refresh
token cycling.

Low.
Primarily driven by numerous
issues within the live ecosystem
Refresh Token Cycling has been
disabled in a majority of Holder
deployments.

None.
Existing implementations would
remain unchanged (they already
handle both scenarios).

Question Responses
We provide the following feedback regarding the specific questions posed by the DSB.

1(a) Should Refresh token expiry time be pegged to consent duration?
Biza.io sees our answer to this question being somewhat tied to the future of Refresh
Token Cycling. We see essentially nil value in rotating Refresh Token’s within the CDR
security context and as such believe refresh token expiration before consent expiration
should not occur – therefore expiration time should, at a minimum, be the consent
duration expiration time.

On the other hand, issuing refresh tokens with expiration more than the sharing
duration may have value in the future, for instance to find consent status after it has
expired, however we feel this is a use case best considered in the broader context of
rich authorisation.

As it stands right now Holders are either issuing refresh tokens shorter than sharing
duration (and cycling) or issuing refresh tokens with an expiration matching the consent
duration. In summary, Biza.io supports the pegging of Refresh Token Expiry time to the
consent duration.

1(b) Should CDR authorisation input parameters be registered or otherwise
moved out of the authorisation request object?

We find it unlikely that cdr_arrangement_id and sharing_duration would pass
the requirements for international registration and that doing so would likely be a time
consuming exercise with possible zero success. Additionally, moving these parameters
to another place now would appear to be a case of too little too late as implementations
have already adapted to support these requirements.

Biza.io agrees with the alternative which is to leave the input parameters as-is and
instead focus on the next steps associated within Decision Proposal 210 and the
adoption of Rich Authorization Requests.

1(c) Should CDR token response parameters be registered or otherwise
moved out of the parent token endpoint response JSON / ID token JWT?

As per our answer to 1(b) we find it unlikely any of the response parameters would pass
the requirements for international registration.

With this stated we do see opportunity to simplify the claims within the ID Token and as
such suggest, assuming that refresh token expiration time is pegged to sharing
duration, that both the sharing_expires_at and refresh_token_expires_at
be removed entirely as they would both be the same values as that described within the
exp of the refresh token either as a JWT or via an introspection request. For once-off
consents the absence of a refresh token would indicate a single access token or an exp
within 24 hours of the iat would be sufficient.

 11

Fundamentally our strategy in this regard is focused on streamlining the existing
process and removing potential future blockers toward FAPI 2.0 and RAR adoption.
With the above proposal only the cdr_arrangement_id would be present - within the
token endpoint response – smoothing the pathway for eventual removal of ID Token
entirely.

2(a) Should the CDR explicitly define the request_uri must only be used
once and cannot be replayed
Biza.io supports the statement that a request_uri must only be used once and
cannot be replayed.

While Biza.io currently explicitly enforces this we note there is the potential for user
agents to trigger reuse (refreshing browser, double clicking a generated link etc) and as
such recommend the DSB consider defining error behaviour should a request_uri
be detected as utilised more than once and define recommendations for Data
Recipients with respect to avoiding this behaviour.

2(b) Should the CDS explicitly define the upper lifetime of the PAR
request_uri?
Biza.io supports defining the upper lifetime of a PAR generated request_uri
however we believe 60 minutes would be far more than the recommendation within
RFC9126 2.2 which states:

The request URI lifetime is at the discretion of the authorization server
but will typically be relatively short (e.g., between 5 and 600 seconds).

We suspect the DSB has given 60 minutes as the example based on the FAPI
specification but this is related to the Request Object submitted not the PAR
request_uri generated and realistically user agents are typically immediately
redirected.

At this point Biza.io utilises PAR requests with a 90 second lifespan.

2(c) Should the Data Standards make requiring PAR mandatory for all Data
Holders and Data Recipients?

Biza.io strongly supports migrating exclusively to PAR as the request object
submission method as it significantly reduces the front-channel attack surface,
simplifies implementations and allows broader approaches to solutions for scaling.

3(a) Should JARM be supported when response_type is code?

As stated in Decision Proposal Clarifications we believe JARM is required when
response_type is code because the FAPI specification states response_type of
code requires response_mode of jwt for which JARM is specified as the method for

 12

doing so.

3(b) Should the Data Standards require JARM when response_type is code?

We believe this is the case for FAPI 1.0 alignment.

3(c) Should the CDS mandate that the same kid is not allowed to be used by
multiple keys within a JWKS?

FAPI 1.0 recommends this behaviour but does not mandate it. We note that, due to
encrypted id tokens, a duplicate kid within the CDR has a higher probability of causing
significant issues.

Biza.io supports the explicit requirement to ensure all JWKS kid values are unique.

Alternate Phasing Schedule
Biza.io believes that the migration to FAPI 1.0 is an opportunity to realign the CDR with international standards and in so doing benefit
from the experience of multiple ecosystems globally. We also believe that where there is opportunity for implementers to start aligning
with the emerging FAPI 2.0 profiles that they be enabled to do so.

Biza.io feels that acceleration of this re-alignment wherever possible would be advantageous to the ecosystem so that more time can
be spent on developments for which Australia can lead on (for instance complex consents enabled by FAPI 2.0 Trust Framework)
rather than lagging international alignment. By doing so the CDR ecosystem can also benefit from early adopters on both sides who can
provide feedback in future proposals regarding learned experiences.

We recommend an acceleration towards FAPI 1.0 alignment and instead propose the following phasing table with the first occurrence of
alignment coloured in green:

 Current State Phase 1 Phase 2
 1st March 2022 1st May 2022
FAPI 1.0 Baseline (Final) Support Implementer’s Draft 2

(Draft 06)
Partial Fully Supported

Scope Request Support Always FAPI 1.0 FAPI 1.0
Authorization Code Reuse SHOULD refuse MUST refuse MUST refuse
Content-type Header Requirement SHOULD support SHOULD support MUST support
FAPI 1.0: Advanced (Final) support Implementer’s Draft 2

(Draft 06)
Partial Fully Supported

Cipher Support Draft 06 Draft 06 FAPI 1.0
JARM Support & JWT Response Mode No MUST with code response

type and jwt response
mode

MUST with code response
type and jwt response mode

 14

PAR version Draft 01 RFC 9126 RFC 9126
Require Pushed Authorization
Requests

Not Supported Optional Mandatory

Request Object Submission Authorisation endpoint and
PAR

Authorisation endpoint and
PAR

PAR only

PKCE Support (RFC 7636) Not Specified Optional Mandatory
Response Type code id_token (MUST) code id_token (MUST)

code (MAY)
code id_token (MUST)
code (MAY)

Request URI Replay SHOULD refuse MUST refuse (Not Allowed) MUST refuse (Not Allowed)
Multi-Brand Support (Separate Issuers
for Data Holder Brands)

Separate issuer Separate issuer Separate issuer

Access Token Revocation Mandatory Mandatory Mandatory
Additional Proposals
Signed Introspection
Request/Responses

No Optional Optional

Unencrypted ID Token Support No Optional Mandatory
Disable Refresh Token Cycling No SHOULD NOT SHALL NOT

About Biza.io
Biza.io are the market leaders in Data Holder solutions to the Consumer Data Right
and are the only pure-play CDR vendor in Australia. Founded by the former
Engineering Lead of the Data Standards Body (DSB), Biza.io has been involved in the
Data Standards setting process since the very beginning and its personnel remain the
largest non-government contributors to the consultations. In addition to its participation
within the CDR, Biza.io is also a contributing member of the Financial-grade API (FAPI)
Working Group, contributors to the FAPI 1.0 information security profile and co-authors
of the Grant Management for OAuth 2.0 specification.

About Our Customers
As of November 2021, Biza.io is directly responsible for delivering, or verifying solutions
used by, over 60% of active Data Holders servicing more than 4 million Australians.
Beyond just a contractual engagement Biza.io considers all its customers partners in
the journey toward open data. Our customers choose us to not only achieve
compliance but to compete then command the consumer data ecosystem.

