
1 | P a g e

Data Standards Body
Technical Working Group
Decision Proposal 120 – Enhanced Error Handling – Error Code Catalogue

Contact: Mark Verstege
Publish Date: 12th June 2020
Feedback Conclusion Date: 10th July 2020

Context

Well-defined error handling is key to integration of ADRs and Data Holders. As the CDR ecosystem

grows — soon to accommodate all Accredited Deposit-taking Institutions — the complexity for ADRs

without well-defined and deterministic error handling grows. In turn, this will lead to inconsistent

handling of errors by ADRs and a poorer consumer experience that may become confusing and

lower trust in the CDR.

To provide predictable and scalable error handling across the ecosystem, Ensuring that there is clear

standards to apply application logic for error handling in a consistent fashion is critical.

This proposal specifically relates to the definition of a catalogue of CDR error codes that apply to the

Data Standards and CDR Register. It is considered in conjunction with a group of decision proposals

under the Enhanced Error Handling problem space:

• Decision Proposal 119 - Enhanced Error Handling Payload Conventions

• Decision Proposal 120 - CDR Error Codes for Enhanced Error Handling (this proposal)

• Decision Proposal 121 - Application of existing HTTP Error Response Codes to Enhanced

Error Handling

• Decision Proposal 122 - Extension of Supported HTTP Response Codes for Enhanced Error

Handling

• Decision Proposal 127 - CX Guidelines for Enhanced Error Handling

Background

Whilst HTTP status codes describe the nature of an error at a coarse-grained level, they provide little

detail to the client about the specific error encountered. Because many unique error scenarios may

be encountered, defining a common error catalogue that all participants must implement can

improve consistency and reduce the complexity cost for API clients, especially Data Recipients.

HTTP status codes, whilst sufficient to describe the nature of an error at a coarse-grained level, are

often times insufficient to convey enough information about an error to be helpful. Especially in an

ecosystem such as the CDR where there are many server and many client implementations, being

more specific when describing a domain-specific error can reduce complexity and inconsistency.

Conveying the application logic of the CDR ecosystem is important to enable API clients to build

against the business rules of the CDR.

2 | P a g e

Defining a CDR-specific catalogue of error codes provides predictability and specificity where

commonality in error handling aides clients and consumers. This enables API clients to be informed

of both the high-level error class (using the status code) and the finer-grained details of the problem

(using one of the CDR error codes).

For example, consider a request to get the transaction for a consumer’s bank account but that

account has been removed from the consent arrangement and is no longer accessible The 422

Unprocessable Entity status code might inform the API client that the request encountered an error

but it is generic and does not convey any business logic that resulted in the error. Thus, defining a

catalogue of CDR Error codes is important to convey enough business logic to the API client to allow

them to programmatically interpret the error and handle it gracefully. Equally, it ensures that API

clients can rely on a consistent implementation across the many server implementations.

Whilst this is primarily to aide Data Recipient to Data Holder communications, there are other flows

such as Data Recipient to CDR Register, Data Holder to Data Recipient and CDR Register to Data

Holder communications that also benefit from implementation consistency.

To-date the data standards have defined a single error code relevant to data holder

implementations. The CDR Register has not defined any error codes which may be returned from the

CDR Register as part of servicing data recipient and data holder requests.

The standards have avoided defining common error codes until clear and explicit error scenarios are

identified by the community. As the CDR moves closer to go-live for consumer data sharing, there

are now participants with working implementations working on real-world integration and

interoperability challenges. This has led to a number of defined error scenarios to be identified.

The key problem to solve is one based on need to define a set of common error codes that

participants must adopt. The reasons the definition of this catalogue is important now is:

• it provides uniformity and consistency on error scenarios expected to be commonplace to all

participants

• reduces the risk of implementation fragmentation moving forwards

• provides greater predictability for ADRs and better CX outcomes for graceful handling of

errors to assist consumers in their user journey

• is defined based on a body of evidence from real-world implementation of the first stable

version of the CDS and the lessons learnt

• ensures that the CDR ecosystem as it evolves to take on a large number of non-major ADIs

can scale and continue to interoperate in a predictable and repeatable manner

• provides consumer experience guidance when errors are encountered and how they must

be represented to consumers as well as the options for handling for the errors

Decision To Be Made

• Define the CDR Error Code Catalogue applicable to all software in the CDR ecosystem.

3 | P a g e

Requirements

1. There must be uniformity across the CDR Register and Data Standards

2. There must be flexibility to enable participants to extend the list of CDR error codes to their

purposes

3. Participants must use CDR error codes where they are identified instead of creating a

custom error code that represents the same error scenario

4. Error handling must consider security of the Data Holder and CDR regime

5. Error handling must consider the consumer’s privacy and circumstances

6. Errors must be meaningful to API clients and consumers

7. Error codes must be defined in a way to be supportable across a large ecosystem of

participants

Options Identified

Normative References

Option 1 – Don’t change normative references

The handling of concerns such as oAuth token validation is handled by the normative references in

the standards. The data standards do not seek to define CDR Error Codes where the normative

standards apply. This ensures that normative references can be relied upon for interpretation and

implementation based on the underlying standards themselves.

Option 2 – Override normative references to use CDR error codes and format

The counter position to this would make it hard to maintain the data standards because there would

be highly coupled dependencies to the version of the normative references as well as the fact that it

is unlikely to be practical to implement where organisations use off the shelf technologies to provide

components of their solution such as Identity and Access Management or API Gateway software. In

these cases, error handling typically has limited flexibility to customise.

Error Code Enumerations Catalogue

Option 1 – No change

Define no new error codes and maintain only the one error code currently defined by the data

standards but map this to the agreed error code enumeration namespace changes.

Option 2 – Extend error catalogue to previously

Extend the error catalogue based on the error scenarios currently provided by the community. These

are provided below in the Error Catalogue table.

4 | P a g e

Option 3 – Extend error catalogue to all CDR data flows

This extends option 2 but continues the work with the community to map out any other error codes

required to cover known error scenarios that are not covered by normative references. This includes

identifying error codes across:

• consent establishment,

• consent withdrawal and revocation,

• data sharing requests for once-off, ongoing and concurrent consent,

• CDR Register onboarding and CDR Register interactions,

• notification events between Data Recipients and Data Holders,

• NFRs and metrics reporting

Error Catalogue

MUST vs SHOULD vs MAY

The data standards follow the definitions in RFC2119 which provide the definition and use of key

words defining requirements levels. It is expected that despite more specific guidance, some errors

would not be MUSTs because the infrastructure of a given organisation may prevent the

customisation of error codes. A good example of this is modern WAFs and API Gateways typically

handle general errors, so they are handled consistently and reliably across an API catalogue. Errors

like rate limiting, URIs not found because they haven't been published in the organisation's API

Portal and the like are common scenarios where forcing a CDR Error Code may be unviable.

Reasonable effort should be made by all participants to fully implement the catalogue of error codes

however there is necessary flexibility for participants. In saying that, there are error codes that are

described as MUSTs because it is viable to cater for error handling logic within the application layer

for the API.

 Error Categories

Errors have been categorised into a collection of error categories that represent a set of similar

issues. Generally, they will be handled in a similar fashion although they may result in different HTTP

Status Codes and unique CDR Error Codes.

Error Category Description

Register This error category is reserved for use by the CDR Register only. Data

Recipients and Data Holders must not use this error category for their custom

error codes.

Invalid The API request contains a structurally invalid parameter, field or header or

it does not conform to the data type (either primitive or type definition)

specified for the field (e.g. integer vs Base64 vs AmountString).

5 | P a g e

Error Category Description

Constraint Violation The API request contains a field-value that violates a constraint or condition for

allowable values for that given field. For example,

• “page=6” is requested but only 5 pages of transactions exist

• A “product-category” filter request by a value that is not defined

• The value provided does not conform to the regex for a field

Currently error codes presented below are covered by the “Invalid” category

however there may be merit in differentiating field-value errors differently to

invalid field type or malformed fields.

Missing An expected field, header or parameter was missing but it is required. This

occurs when a field is mandatory or conditionally required and there is no

default value that can be applied. The Resource Server cannot reliably service

the request without the missing field because it would break the interface

contract and/or cannot be reasonably interpreted.

Unexpected Field

or Header

The API request was not expecting to receive a field, but the client made a

request that included an unexpected field.

Data Validation Whilst the request was well formed, the value is known to violate the

allowable values or a source data constraint. Examples include the filtering of

products where the product-category is not supported by the ADI.

Not Found The API request is for an API that is currently unsupported by the Resource

Server or not specified in the CDS.

Resource

Entitlements

An entitlement of the consumer for a protected resource is not met.

Entitlements conditions include:

• The status of the ADR may not be valid,

• Consent may be in a status that does not permit the successful

execution of the request,

• An account-level permission or entitlement prevents execution (e.g. a

joint account holder has revoked consent election),

• The resource is protected and cannot be found,

• A Resource Server business rule prevents execution,

• The Resource Server does not want to disclose if the resource exists

• The customer no longer owns an account or is no longer a customer of

the bank

Unsupported The request is unsupported because of a qualification the client requested.

Unexpected Error Something happened when processing the request but it was not expected.

6 | P a g e

Error Category Description

Service Unavailable The CDR service is down for system maintenance / scheduled outage or there

is either a full or partial unscheduled outage. ADRs may check the Data

Holder’s Get Outages and Get Status endpoints for further details.

Error Catalogue

The error catalogue represents the suggested catalogue of errors based on the known error

scenarios. Other error codes may be identified through further consultation.

Element Definition

HTTP Status Code The HTTP Status Code that maps to the CDR Error Code for the given error

scenario

Error Code Maps to the standard error code structure: /errors/error[x]/code

Error Code Title Maps to the standard error code structure: /errors/error[x]/title

Error Scenario The specific error scenario raised by the community and how it must be

handled

7 | P a g e

HTTP Status Code Error Code Error Code Title Error Scenario

1. 400 (Bad Request) AU.CDR.Missing.Field Missing Required

Field

The request is missing a mandatory field required for the API.

It may be a missing query parameter or missing field in the

request payload. This error code can be used, if it is

not already captured under a specialising validation.

Reference of the missing field should be provided in the error

description explaining the specific error encountered.

Applies to:

• Query parameters

• Request body parameters

2. 400 (Bad Request) AU.CDR.Missing.Header Missing Required

Header

A required HTTP header has not been provided. The HTTP

Header should be specified in the error description.

Applies to:

• Header parameters

3. 400 (Bad Request) AU.CDR.Unexpected.Field Unexpected

Field Not

Allowed

When a query parameter or request body field-value is

provided but the API forbids the use of that field-value or any

others but the ones specified by its interface contract.

Reference of the unexpected field should be provided in the

error description.

Applies to:

• Query parameters

• Request body parameters

8 | P a g e

HTTP Status Code Error Code Error Code Title Error Scenario

4. 400 (Bad Request) AU.CDR.Unexpected.Header Unexpected

Header Not

Allowed

When a HTTP Header is provided but the API forbids the use of

that field-value or any others but the ones specified by its

interface contract.

The HTTP Header should be specified in the error description.

Applies to:

• Header parameters

5. 400 (Bad Request) AU.CDR.Invalid.Field Invalid Field When the value of the URL field or request body field is an

invalid type or the value violates the field’s constraints as

defined by the interface contract.

For example, page-size is a PositiveInteger but a DateString is

provided.

Reference of the field should be provided in the error

description along with the detail explaining the valid format.

Applies to:

• Query parameters

• Path parameters

• Request body parameters

6. 400 (Bad Request) AU.CDR.Invalid.Header Invalid Header When a HTTP Header is provided but the field-value is an

invalid type or violates the constraints as defined by the data

standards.

The HTTP Header should be specified in the error description.

Applies to:

• Header parameters

9 | P a g e

HTTP Status Code Error Code Error Code Title Error Scenario

7. 400 (Bad Request) AU.CDR.Invalid.DateTime Invalid Date An invalid date is supplied e.g. when a future date is expected,

a date in past or current date is supplied. The message can

specify the actual problem with the date. Reference of the

invalid field should be provided in the description field

explaining the valid behaviour.

Applies to:

• “oldest-time” query parameter

• “newest-time” query parameter

8. 400 (Bad Request) AU.CDR.Invalid.PageSize Invalid Page Size Page Number/Page size not a positive Integer

Applies to:

• “page-size” query parameter

9. 400 (Bad Request) AU.CDR.Register.InvalidBrand Invalid Brand The brand provided to get the Data Recipient software

statement assertion is invalid.

Applies to:

• dataRecipientBrandId path parameter for CDR Register

APIs

10. 400 (Bad Request) AU.CDR.Register.InvalidIndustry Invalid Industry

Requested

The industry requested in the path to get Data Recipient or

Data Holder metadata is invalid / does not exist and cannot be

found.

Applies to:

• “industry” path parameter for CDR Register APIs

10 | P a g e

HTTP Status Code Error Code Error Code Title Error Scenario

11. 401

(Unauthorised)

AU.CDR.Entitlements.InvalidAdrStatus ADR Status Is

Invalid

The ADR or the ADR software product is not in an "active"

state in the CDR Register

Reference of the invalid ADR status should be provided in the

description.

Applies to:

• All authenticated APIs

12. 401

(Unauthorised)

AU.CDR.Entitlements.InvalidAdrSoftware

ProductStatus

ADR Software

Product Status Is

Invalid

The ADR or the ADR software product is not in an "active"

state in the CDR Register.

Reference of the invalid ADR Software Product status should

be provided in the description.

Applies to:

• All authenticated APIs

13. 403 (Forbidden) AU.CDR.Entitlements.InvalidConsentStat

us

Consent Is

Invalid

The resource’s associated consent is not in a status that would

allow the resource to be to be executed.

E.g., if consent had been revoked but the data recipient tries to

request the customer details.

Reference of the consent should be provided in the description

field explaining the reason consent is invalid.

Applies to:

• All authenticated APIs

11 | P a g e

HTTP Status Code Error Code Error Code Title Error Scenario

14. 403 (Forbidden) AU.CDR.Entitlements.ConsentIsRevoked Consent Is

Revoked

The consumer's consent is revoked, and the data request will

not be serviced. It is a specialisation of

AU.CDR.Entitlements.InvalidConsentStatus.

Reference to the consent status should be provided in the

description field, without revealing sensitive information.

Applies to:

• All authenticated APIs

15. 403 (Forbidden) AU.CDR.Entitlements.Forbidden Resource Is

Forbidden

A business or security condition prevents the request and it

has been forbidden.

Reference to the specific error encountered should be

provided in the description field, without revealing sensitive

information.

Applies to:

• All authenticated APIs

16. 404 (Not Found) AU.CDR.Register.InvalidSoftwareProduct Invalid Software

Product

The software product requested provided to get the Data

Recipient software statement assertion is invalid or cannot be

found.

Applies to:

• “softwareProductId” path parameter for CDR Register

APIs

12 | P a g e

HTTP Status Code Error Code Error Code Title Error Scenario

17. 404 (Not Found) AU.CDR.Resource.NotImplemented Resource Not

Implemented

The requested resource is part of the data standards but it is

not implemented or not currently supported by the Resource

Server.

Reference to the specific resourceId or error encountered

should be provided in the description field, without revealing

sensitive information.

Applies to:

• Any unimplemented API

18. 404 (Not Found) AU.CDR.Resource.NotFound Resource Not

Found

The requested resource is not part of the data standards and is

not a holder-specific extension.

Reference to the specific resourceId or error encountered

should be provided in the description field, without revealing

sensitive information.

Applies to:

• Invalid resource identifiers

• URL resources that don’t exist

19. 404 (Not Found)

[in path]

422

(Unprocessable

Entity) [in body]

AU.CDR.Resource.Invalid Invalid Resource

Identifier

The requested resource identifier is invalid, does not exist or

will not be disclosed for business or security reasons.

Reference to the specific resourceId should be provided in the

description field.

Applies to:

• Resource identifiers as path parameters

• Resource identifiers as request body parameters

13 | P a g e

HTTP Status Code Error Code Error Code Title Error Scenario

20. 404 (Not Found)

[in path]

422

(Unprocessable

Entity) [in body]

AU.CDR.Resource.Unavailable Resource Is

Unavailable

The requested resource is currently in a state that makes it

unavailable but this may change in the future.

Reference to the specific resource Id should be provided in the

description field.

Applies to:

• Resource identifiers as path parameters

• Resource identifiers as request body parameters

21. 404 (Not Found)

[in path]

422

(Unprocessable

Entity) [in body]

AU.CDR.Resource.InvalidBankingAccoun

t

Invalid Banking

Account

The account bank account does not exist, the account is not

associated to the consumer’s active consent, or business

reasons exclude executing this resource.

Reference to the specific accountId should be provided in the

description field.

Applies to:

• “accountId” path parameter

• “accountId” request body parameters

22. 404 (Not Found)

[in path]

422

(Unprocessable

Entity) [in body]

AU.CDR.Resource.UnavailableBankingAc

count

Banking Account

Is Unavailable

The requested bank account is no longer associated to the

active consent, a joint-account holder has withdrawn consent

election or the account is currently in a state that makes it

unavailable but this may change in the future.

Reference to the specific accountId should be provided in the

description field.

Applies to:

• “accountId” path parameter

• “accountId” request body parameters

14 | P a g e

HTTP Status Code Error Code Error Code Title Error Scenario

23. 406 (Not

Acceptable)

AU.CDR.Unsupported.Version Unsupported

Version

Requested

Either:

• A request is made with a version that is less than the

minimum version (x-min-v) the data holder supports.

• A request is made with a version that is greater than

the maximum version (x-v) the resource server

supports.

Both x-min-v and x-v are Positive Integers but the range

between them is not a supported version.

The data holder should respond with the highest supported

version between x-min-v and x-v. If the value of x-min-v is

equal to or higher than the value of x-v then the x-min-

v header should be treated as absent. If all versions requested

are not supported then the data holder should respond with a

406 Not Acceptable.

Applies to:

• “x-v” header parameter

• “x-min-v” header parameter

24. 422

(Unprocessable

Entity)

AU.CDR.Invalid.PageOutOfRange Page Requested

Is Out Of Range

Page out of range (e.g Valid pages are 5 and the client

requested 10)

Applies to:

• “page” query parameter

15 | P a g e

HTTP Status Code Error Code Error Code Title Error Scenario

25. 422

(Unprocessable

Entity)

AU.CDR.Invalid.PageSizeTooLarge Page Size

Exceeded

Page size is greater than max (page_size > 1000)

Applies to:

• “page-size” query parameter

26. 422

(Unprocessable

Entity)

AU.CDR.Invalid.Version Invalid Version

Requested

A request is made for a version that is not a positive integer.

For example:

• x-min-v or x-v are not Integers (e.g. x-min-v=foo, x-

v=bar)

• x-min-v or x-v are not Positive Integers (they are an

Integer but <= 0)

Applies to:

• “x-v” header parameter

• “x-min-v” header parameter

27. 418 (I'm A Teapot) AU.CDR.IAmATeapot I'm A Teapot Client requests the status of their brewed coffee by calling GET

/status/coffee.

A resource server may return a 418, otherwise a 404 (Not

Found) applies if the resource server doesn't offer coffee.

Applies to:

• GET /status/coffee

16 | P a g e

HTTP Status Code Error Code Error Code Title Error Scenario

28. 503 (Service

Unavailable)

AU.CDR.Service.Unavailable Service

Unavailable

A request is made but the API unavailable as part of a partial

outage.

The description should describe whether the outage is

scheduled or unexpected and whether it is fully unavailable or

partially unavailable.

Applies to:

• All APIs

29. 5xx AU.CDR.UnexpectedError Unexpected

Error

An error code that can be used, when an unexpected error

occurs.

The resource server must populate the error description with a

meaningful error description, without revealing sensitive

information.

Applies to:

• All APIs

17 | P a g e

Current recommendation

The current recommendation of the Data Standards Body is to define an error catalogue within the
data standards which lists the mandatory and recommended error codes that participants must use
for API response. It is recommended that the catalogue documented in the previous section would
form the initial basis of this catalogue within the standards.

It is also recommended that CDR error codes are not defined when errors are covered by normative
references. This allows the normative standards to implement error handling as per the normative
standards.

Of the options represented in the option section above this would include the adoption of:

• Normative References Option 1 – Don’t change normative references:
normative references will stand untouched to ensure there is a high level of conformance
and out-of-the-box vendor support

• Error Code Enumerations Catalogue Option 3 – Extend error catalogue to all CDR data flows:
a baseline error catalogue is presented in this decision proposal with further community
consultation required to identify remain common error scenarios

Given there is only one core CDR Error Code currently defined in the data standards, this would
result in a minor change to the data standards but create greater long-term predictability in the
ecosystem. Addressing the issue of enhanced error handling now is most pragmatic because further
delay will result in a greater implementation impact to the CDR. As more participants enter the
ecosystem, the ability to make these changes will be reduced and overall consensus and
conformance will be harder to reach.

The DSB is seeking feedback on this recommendation. In particular, feedback from data recipients on
what granularity of detail they require for errors to be handled gracefully and programmatically in
their software. Feedback on additions or amendments to the catalogue documented in the previous
section is also specifically sought.

In addition, feedback is welcome on the implementation impacts of the changes recommended.
Suggestions as to how the changes could be phased in safely for all participants are also welcome.

18 | P a g e

Appendix - Design Guidelines

The following guidelines are provided as design guardrails to frame and evaluate the options and
outcomes.

Uniformity

1. Error handling must be defined consistently across the CDR Register and Data Standards.

a) The architecture should be consistently applied to the CDR Register, Data Recipients and
Data Holders.

2. Error handling should observe and support normative references not override them.

a) Where normative references clearly define error responses, the data standards should not
seek to override them to allow for conformant implementation of normative standards

Security

The security risk is the inadvertent exposure or inference of authentication information or sensitive
data through the use of Error Codes. The most relevant OWASP risk is A3:2017 Sensitive Data
Exposure, which is primarily controlled by the implementation of TLS. This proposal needs to take
into consideration what information these Error Codes may reveal.

1. Error handling must not compromise the security of the Data Holder or CDR ecosystem.

a) The design process must identify which errors require an error message to be sent or
displayed to the User.

b) Error Handling must be coded so that a failure of the Data Holder or any component of the
Data Holder reveals only general information to a User. The Data holder may internally log
more detailed technical information on the nature of the failure to a secure log in line with
the Data Holder's usual and expected security and software management processes.

c) A User must not be able to use an error response to infer other information. For example, a
message that a password is incorrect infers the username is correct.

d) A User must not be able to use an error response to gain elevated privileges.
e) A User must not be able to use an error response to gain access to a resource they are not

entitled to access. For example, an attacker must not be able to employ API fuzzing
techniques to infer a valid resource which belongs to another User.

f) Error data is for the purpose of machine to machine communications. Clients should
interpret Resource Server errors but not display detailed descriptions verbatim to Users.

2. Error handling must not compromise the privacy of the consumer

a) The design process must identify PII data and exclude this from the detailed error message
to observe data privacy and security concerns. For example, a customer's Internet Banking
ID should not be revealed as an identifier for the customer.

19 | P a g e

b) Error Handling must be coded so that a failure does not reveal the Data Holder-side
customer entitlements. For example, a message that the account is not available because
there is a fraud lock on the account should not be shared.

Consumer Experience

Whilst improving machine-to-machine communication of errors is a key outcome, ultimately better
servicing the consumer is the primary focus to ensure that the consumer is aware of errors, actions
they can or should take, and the considerations of a consumer's situation when conveying errors to
make sure their privacy and rights are protected.

1. Errors must be contextual to the user and the experience

a) For consumer-attended data requests and out-of-band notifications, a Client must convey
errors that are comprehensible, clear and specific.

b) Errors must be described to consumers in the language of the Client, not the Data Holder.
Clients should interpret errors by resource servers but not relay the errors verbatim because
they have no control of consistency and content.

c) A Client should convey errors in the personality of the Client's brand so it familiar and
consistent with the Client's other digital channels.

d) A Client should consider the context of the individual consumer and may personalise error
messages appropriate to the consumer.

2. Errors must be meaningful to the consumer when consumers are asked to take action

a) Users must be informed and comprehend the choices they are asked to choose from when
performing an action to resolve an error.

b) When actions need to be taken errors should be meaningful to the consumer, not the
software.

c) When consumers are asked to retry actions or tasks, the Client should inform the consumer
how many attempts will be tried.

d) Clients should inform consumers what alternative options they have when errors are
encountered.

e) If a Client encounters an error that has material impact to the functioning of the use case
and purpose but it cannot be resolved, the consumer should be notified (whether it is
attended or unattended).

3. Errors must be sensitive to the circumstances of the related consumers

a) When a consumer is impacted by the exchange of an error, they should be made aware of
the issue. For example, a joint account holder may be notified by text or email when they
have withdrawn consent for an account they own but an ADR continues to request access to
their data.

b) Errors must not divulge the situation of a Secondary Consumer to a Primary Consumer
where it may cause harm. All consumers are protected by hardship rules and just because
the primary consumer established consent, does not change a Data Holder's obligations to
consider hardship of other consumers that jointly own an account related to the primary
consumer's consent. For example, a victim of domestic violence should be protected even if
they did not provide consent for the perpetrator to access their account data. Data Holders

20 | P a g e

must not leak information through error codes where it will knowingly cause harm or
hardship.

Flexibility

No error code catalogue is ever complete. As new software products are developed new errors
scenarios are defined. Likewise as the CDR is evolved to provide new data, different error scenarios
are likely. A flexible architecture is enabling without imposing overhead on implementation.

1. Participants should have the flexibility to define new error codes

a) Participants—primarily Data Holders—must have flexibility where their processes identify
new error scenarios within their typical development lifecycles. Because every data holder
manages different data, has different constraints (e.g. which core banking system they use)
and has different development release cycles, there needs to be enough flexibility for data
holders to express new errors relevant for their software.

b) A flexible architecture should allow interfaces that integrate with both current and future
components.

2. Custom participant error codes should not clash to avoid ambiguity across different
participant implementations

a) With flexibility, there should still be structure to avoid unnecessarily creating more
ambiguity.

b) The design process should provide a way that offers flexibility without causing collisions in
the unreserved namespace.

c) The design process should prefer an approach that reserves namespaces and has a
taxonomy that avoids the same error code meaning more than one thing across
implementations.

3. The architecture should be adaptable to anticipated change

a) The architecture should provide a way that doesn't generate breaking change to all
implementations and versions.

b) The architecture should adapt to the needs of participants. This includes new participants
entering an industry, new industry sectors and new data being shared in existing or new
APIs.

4. The architecture should allow participants extensibility to include meaningful custom data
where it benefits their Users.

a) Participants must have the ability to define extensions to the Error data model in a way that
doesn't break client implementations.
A good example where this may be useful is a Data Holder which defines an account opening
API in the extensible, competitive space may need to convey additional detail when
reporting errors that is not catered for by the core CDR error model.

b) The architecture should allow for a necessary level of descriptiveness to ensure errors are
well understood by Users.

21 | P a g e

Supportability

1. The architecture should provide supportability for change over time

a) The design process should preference backwards compatibility because change over time
with more participants in the ecosystem becomes harder.

b) The design process should define migration paths from custom error codes to common
standard error codes that fosters adoption within pragmatic timeframes.

c) Changes to payload structure and data model should only include data requirements that
are appropriate to convey the necessary level of detail required to support the ecosystem.

2. Custom error codes should be reviewed periodically for adoption as core CDR Error Codes

a) Custom error codes should be reviewed every six (6) months to identify new core CDR Error
Code candidates
Put simply, enhanced error handling should be reviewed on a regular basis (e.g. every 6
months) and new error scenarios identified and incorporated into the defined error
catalogue.

b) Error codes should be adopted as core through a process of consultation and consensus
where they benefit the ecosystem.

c) The design process should reduce ambiguity in the ecosystem where it leads to reduced
costs, complexity, friction or ambiguity.

22 | P a g e

Appendix – Mapping of Error Scenarios from community issues

Error Code Mapping To Identified Error Scenarios

This table represents the mapping of proposed CDR Error Codes and HTTP Status Codes to the error scenarios identified by the community and consulted
on via GitHub.

Source Error Scenario HTTP Status Code
options

Proposed Error Code / HTTP
Status Code

Issue
#117

Situation:
Account APIs called with one or more accountIds not part of consent. Some
accountIds are part of consent.
Does this API return “unauthorised” response, Or; does the API return data for
only one account and not indicate that the response is partial?
Acceptance Criteria:

• Account API was called for 2 accounts specified in the request
• Consent is valid
• One account is a part of consent
• The other one is not a part of consent

404 (Not Found)
or
422 (Unprocessable
Entity)
or
200 (OK)

HTTP Status Code
404 (Not Found) [if path]
422 (Unprocessable Entity) [if
request body]
CDR Error Code
AU.CDR.Resource.InvalidBankingA
ccount

23 | P a g e

Source Error Scenario HTTP Status Code
options

Proposed Error Code / HTTP
Status Code

Issue
#117

Situation:
Account APIs called with all accountIds not part of consent. All accountIds
provided are not part of consent.
Does the API return “unauthorised” response, Or; does the API return an empty
data set?
Acceptance Criteria:

• Account API was called for 2 accounts specified in the request
• Consent is valid
• Both accounts are not part of consent

Proposed:
404 (Not Found)
or
422 (Unprocessable
Entity)

HTTP Status Code
404 (Not Found) [if path]
422 (Unprocessable Entity) [if
request body]
CDR Error Code
AU.CDR.Resource.InvalidBankingA
ccount

Issue
#117

Situation:
Account APIs called with accountIds that are part of consent but cannot be
shared because of data holder business rules.
Includes account APIs requesting a single accountId.
Acceptance Criteria:

• Consent is valid
• All Accounts are part of consent
• Account cannot be shared because of an entitlements restriction

Expected:
404 (Not Found)
or
422 (Unprocessable
Entity)
or
200 (OK)

HTTP Status Code
404 (Not Found) [if path]
422 (Unprocessable Entity) [if
request body]
CDR Error Code
AU.CDR.Resource.InvalidBankingA
ccount [if sensitive]
AU.CDR.Resource.UnavailableBan
kingAccount [if recoverable]

24 | P a g e

Source Error Scenario HTTP Status Code
options

Proposed Error Code / HTTP
Status Code

Issue #78 Situation:
A request is malformed (because of say a badly formatted query parameter) and
the requested page size is greater than 1000 records.
Acceptance Criteria:

• One or more input parameters is malformed
• Page Size is greater than 1,000 (the maximum allowable page size)

Array of, or one of:
400 (Bad Request) or
422 (Unprocessable
Entity)
Implementation
dependent with
respect to error
precedence.

If Malformed encountered first:
HTTP Status Code
400 (Bad Request)
CDR Error Code
AU.CDR.Invalid.Field
—
If Page Size encountered first:
HTTP Status Code
422 (Unprocessable Entity)
CDR Error Code
AU.CDR.Invalid.PageSizeTooLarge

Issue
#174

Situation:
Call to an unauthenticated resource API
Call to Get Product Detail is made with a non-existent productId
GET https://data.holder.com.au/cds-
au/v1/banking/products/NonExistentProductID

404 (Not Found) HTTP Status Code
404 (Not Found)
CDR Error Code
AU.CDR.Resource.NotFound

25 | P a g e

Source Error Scenario HTTP Status Code
options

Proposed Error Code / HTTP
Status Code

Issue
#174

Situation:
Call to an authenticated resource API.
Call to Get Account Detail or Get Transaction Detail is made with a non-existent
identifier.
Acceptance Criteria:

• Consent is valid
• Account or Transaction ID does not exist

422 (Unprocessable
Entity)

HTTP Status Code
404 (Not Found) [if path]
422 (Unprocessable Entity) [if
request body]
CDR Error Code
AU.CDR.Resource.InvalidBankingA
ccount (if accountId)
AU.CDR.Resource.InvalidResource
(if any other resource)

Issue
#118

Situation
Status of the DR and or the software product changes but the DR continues to
call the DH with a valid access token and the consumer's consent is still valid
Acceptance Criteria:

• ADR status (or Software Product Status) is not Active
• Consumer consent is still active
• DH has not yet withdrawn or cleaned up consent

403 (Forbidden) HTTP Status Code
403 (Forbidden)
CDR Error Code
AU.CDR.Entitlements.InvalidAdrSt
atus
AU.CDR.Entitlements.InvalidAdrSo
ftwareProductStatus

Issue
#141

Situation
An ADR requests transactions are filtered for an account by specifying a text
filter when calling Get Transactions For Account.
Acceptance Criteria:

• ADR uses the "text" filter query
• DH does not support text filtering

200 (OK) HTTP Status Code
200 (OK)
CDR Error Code
N/A, isQueryParamUnsupported
should be included in the meta
object and set to true.

26 | P a g e

Source Error Scenario HTTP Status Code
options

Proposed Error Code / HTTP
Status Code

Issue
#133

Situation
An ADR requests an account resource where one or more accounts requested
cannot be shared because it is in a frozen/suspended state by the DH.
Acceptance Criteria:

• Consent is valid
• Account(s) are associated to consent
• Account(s) have a Frozen/Suspended status.

200 (OK)
or
422 (Unprocessable
Entity)

HTTP Status Code
404 (Not Found) [if path]
422 (Unprocessable Entity) [if
request body]
CDR Error Code
AU.CDR.Resource.InvalidBankingA
ccount

Issue #36 Situation
GET request to /banking/accounts/{accountId} with an invalid accountID

404 (Not Found) HTTP Status Code
404 (Not Found)
CDR Error Code
AU.CDR.Resource.InvalidBankingA
ccount

Issue
117

Situation
Request to Get Accounts when consent has no associated available accounts

200 (OK)
—
with empty
"accounts" list

HTTP Status Code
200 (OK)
CDR Error Code
N/A, empty “accounts” list
returned

DP 68 Situation
Brand Name is invalid: the "brand" query parameter is not a valid brand for the
data holder

422 (Unprocessable
Entity)

HTTP Status Code
400 (Bad Request)
CDR Error Code
AU.CDR.Invalid.Field

27 | P a g e

Source Error Scenario HTTP Status Code
options

Proposed Error Code / HTTP
Status Code

DP 68 Situation
Product Category is Invalid: the "product-category" query parameter is not a
valid product category

422 (Unprocessable
Entity)

HTTP Status Code
400 (Bad Request)
CDR Error Code
AU.CDR.FieldType.Invalid.Field

DP 68 Situation
Product Category is Invalid: the "product-category" query parameter is not
offered by the data holder

422 (Unprocessable
Entity)

HTTP Status Code
400 (Bad Request)
CDR Error Code
AU.CDR.Invalid.Field

DP 68 Situation
Page out of range (e.g Valid pages are 5 and the client requested 10)

422 (Unprocessable
Entity)

HTTP Status Code
422 (Unprocessable Entity)
CDR Error Code
AU.CDR.Invalid.PageOutOfRange

DP 68 Situation
Page size is greater than max (page_size > 1000)

422 (Unprocessable
Entity)

HTTP Status Code
422 (Unprocessable Entity)
CDR Error Code
AU.CDR.Invalid.PageSizeTooLarge

DP 68 Situation
Page Number/Page size not a positive Integer

400 (Bad Request) HTTP Status Code
400 (Bad Request)
CDR Error Code
AU.CDR.Invalid.PageSize

28 | P a g e

Source Error Scenario HTTP Status Code
options

Proposed Error Code / HTTP
Status Code

DP 68 Situation
x-min-v or x-v are not an Integer (e.g. x-min-v=foo, x-v=bar)

422 (Unprocessable
Entity)

HTTP Status Code
422 (Unprocessable Entity)
CDR Error Code
AU.CDR.Invalid.Version

DP 68 Situation
x-min-v or x-v are not a Positive Integer (they are an Integer but <= 0)

422 (Unprocessable
Entity)

HTTP Status Code
422 (Unprocessable Entity)
CDR Error Code
AU.CDR.Invalid.Version

DP 68 Situation
Both x-min-v and x-v are Positive Integers but the range between them is not a
supported version

406 (Not Acceptable) HTTP Status Code
406 (Not Acceptable)
CDR Error Code
AU.CDR.Unsupported.Version

DP 68 Situation
Valid version between x-min-v and x-v however x-v is not an implemented
version. Data Holders supports x-min-v or higher however it does not support
up to the requested x-v version

200 (OK)
—
Should respond using
the highest
supported version of
the endpoint being
called

HTTP Status Code
200 (OK)
CDR Error Code
N/A

29 | P a g e

Source Error Scenario HTTP Status Code
options

Proposed Error Code / HTTP
Status Code

DP 68 Situation
Non existent Product ID (in get Product Details)

404 (Not Found) HTTP Status Code
404 (Not Found)
CDR Error Code
AU.CDR.Resource.NotFound

DP 68 Situation
Trailing / in a GET Products request

200 (OK)
—
(Ignore the trailing
slash)

HTTP Status Code
200 (OK)
CDR Error Code
N/A

DP 68 Situation
No matching products when filters/parameters are specified

200 (OK)
—
(0 Records)

HTTP Status Code
200 (OK)
CDR Error Code
N/A

DP 68 Situation
Product ID is an Invalid ASCII String

400 (Bad Request) HTTP Status Code
400 (Bad Request)
CDR Error Code
AU.CDR.Invalid.Field

30 | P a g e

Appendix: Issues seeking clarification on error handling

A number of conversation threads have been raised by the CDS community where the handling of errors, specific or general, are needed. These have been
presented and summarised here:

Issue Initial
Post

Thematics CDS-API-Stream
Recommendations made (if any)

Link

API Error Schema
Clarification

07 Nov
2019

• Define common CDR error codes
• Error Code Mapping to Error Scenario
• Error Code Mapping to Endpoint
• When is "0001 – Account not able to be found"

applicable

None Issue
#36

Enhanced error handling
Stage 2 delivery risk impact
assessment

07 Feb
2020

• Delivery risks for industry testing
• CX needs to be considered
• ADRs are most exposed to inconsistent error

handling
• When/if 404s are allowed
• Flexibility for DHs should be maintained
• Common Error codes should be defined
• Consult on HTTP Status codes not defined in the

standards (e.g. 404s)

None Issue
#118

Clarification on consent
request scenarios

06 Feb
2020

How should consent entitlements be handled and the
request of resource IDs that aren't part of consent

422 should be returned when an
account Id is requested that is not
part of consent

Issue
#117

31 | P a g e

Issue Initial
Post

Thematics CDS-API-Stream
Recommendations made (if any)

Link

HTTP Header to be returned
in the case where the
request is not entirely well
formed and a large page
size is requested

18 Dec
2019

How should multiple errors be handled
Is there a precedence or hierarchy of error handling?

None Issue
#78

HTTP Status codes
supported by the
specification

01 Apr
2020

When/if 404s are allowed 404 should be returned for PRD
endpoints if there is no product
for the given {productId}

Issue
#174

Status code when a ADRs
software product has
become inactive

16 Apr
2020

How to handle ADR statuses kept in the CDR Register that
are not active (e.g. suspended, revoked etc.)

403 should be returned if the ADR
or the ADR Software Product is
not "active"

Issue
#188

List Transactions text filter
isQueryParamUnsupported

22 Feb
2020

What should happen when an ADR requests a textual
filtering of transactions but this functionality isn't supported
by the DH?

DH should ignore filtering and
response with a meta object
including
isQueryParamUnsupported=true

Issue
#141

Account Status when
Frozen

13 Feb
2020

How do DHs handle situations where an account is in a state
that is neither OPEN or CLOSED (e.g. frozen or suspended)?

None Issue
#133

Using Duration standard for
lastWeekDay in Scheduled
Payments

05 Sep
2019

How should DHs handle invalid pagination None Issue
#5

32 | P a g e

Issue Initial
Post

Thematics CDS-API-Stream
Recommendations made (if any)

Link

Error response code for x-v
version headers

23 Mar
2020

How should DHs handle versions that are not supported or
outside the allowable bounds for versions?

If a mandatory header is missing a
Bad Request error is suitable.
400 Bad Request
If an unsupported version is
requested, such as a negative or
non-integer value, a Not
Acceptable error is suitable.
406 Not Acceptable

Issue
#164

What's the expected
behaviour? x-v set to a
implemented version but a
valid implementation
version exists between x-
min-v and x-v

07 Apr
2020

How should DHs handle versions that are not supported or
outside the allowable bounds for versions?

406 Issue
#179

Errors for Product
Reference Data

29 Apr
2020

If GetProducts API receives invalid Brand or product-category
query parameters in the request, is the expectation to
respond with HTTP 200 with empty data {} or HTTP 400 bad
request?
If GetProducts API receives page param value out of range in
the request, how does a data holder handle the behavior of
pagination objects – links & meta for an empty response.

None Issue
#205

33 | P a g e

Identified Error Scenarios

Bendigo and Adelaide Bank Error Scenarios

This mapping of error codes was contributed by Bendigo and Adelaide Bank as part of their business analysis of HTTP Status Codes for publicly available PRD
endpoints. It includes Bendigo's recommended HTTP status codes in each scenario.

Scenario CBA Westpac NAB ANZ Bendigo’s
preferred
Solution

1 Brand Name Invalid 400 400 200 (0 Records) 200 (0 Records) 400

2 Product Category is Invalid 400 400 400 400 400

3 Page out of range (e.g Valid pages are 5
and you enter 10)

200
(0 Records)

422 200 (0 Records) 200 (0 Records) 422

4 Page > 1000 200 (0 Records) 422 200 (0 Records) 200 (0 Records) 422

5 Page Number/Page size not a positive
Integer

400 400 400 400 400

6 x-min-v not an Positive Integer Could not get any
response

Could not get any
response

406 400 400

7 Non existent Product ID (in get Product
Details)

200 404 400 403 404

34 | P a g e

Scenario CBA Westpac NAB ANZ Bendigo’s
preferred
Solution

8 Trailing / in a GET Products request 200 (same as GET
Products without
a trailing slash)

200 (same as GET
Products without
a trailing slash)

404 200 (same as GET
Products without
a trailing slash)

200 (Ignore the
trailing slash)

9 No matching products when
filters/parameters are specified

200 (0 Records) 200 (0 Records) 200 (0 Records) 200 (0 Records) 200 (0 Records)

10 x-v is a positive Integer but is not a
supported version

406 406 406 406 406

11 Product ID is an Invalid ASCII String 200 400 400 403 400

12 Valid version between x-min-v and x-v
however x-v is not an implemented
version

200

Community submitted error scenarios

These error scenarios have been identified by the CDS community or encountered during industry testing as part of implementation either as a data
recipient or data holder.

35 | P a g e

HTTP Status Code Source Error Scenario Affected Resources

1. Expected:
422 (Unprocessable Entity)

Issue
#117

Situation:
Account APIs called with one or more accountIds not part
of consent. Some accountIds are part of consent.
Does this API return “unauthorised” response, Or; does
the API return data for only one account and not indicate
that the response is partial?
Acceptance Criteria:
• Account API was called for 2 accounts specified in the

request
• Consent is valid
• One account is a part of consent
• The other one is not a part of consent

Affected Resources:
• Get Balances For Specific Accounts
• Get Account Balance
• Get Account Detail
• Get Transactions For Account
• Get Transaction Detail
• Get Direct Debits For Account
• Get Direct Debits For Specific Accounts
• Get Scheduled Payments for Account
• Get Scheduled Payments For Specific

Accounts

2. Proposed:
422 (Unprocessable Entity)

Issue
#117

Situation:
Account APIs called with accountIds not part of consent.
All accountIds provided are not part of consent.
Does the API return “unauthorised” response, Or; does the
API return an empty data set?
Acceptance Criteria:
• Account API was called for 2 accounts specified in the

request
• Consent is valid
• Both accounts are not part of consent

Affected Resources:
• Get Balances For Specific Accounts
• Get Account Balance
• Get Account Detail
• Get Transactions For Account
• Get Transaction Detail
• Get Direct Debits For Account
• Get Direct Debits For Specific Accounts
• Get Scheduled Payments for Account
• Get Scheduled Payments For Specific

Accounts

36 | P a g e

HTTP Status Code Source Error Scenario Affected Resources

3. Expected:
200 (OK)

Issue
#117

Situation:
Account APIs called with accountIds that are part of
consent but cannot be shared because of data holder
business rules.
Includes account APIs requesting a single accountId.
Acceptance Criteria:
• Consent is valid
• All Accounts are part of consent
• Account cannot be shared because of an entitlements

restriction

Affected Resources:
• Get Balances For Specific Accounts
• Get Account Balance
• Get Account Detail
• Get Transactions For Account
• Get Transaction Detail
• Get Direct Debits For Account
• Get Direct Debits For Specific Accounts
• Get Scheduled Payments for Account
• Get Scheduled Payments For Specific

Accounts

4. Options Proposed:
• 400 (Bad Request)

or
• 422 (Unprocessable

Entity)
Proposed:

• Implementation
dependent

Issue #78 Situation:
A request is malformed (because of say a badly formatted
query parameter) and the requested page size is greater
than 1000 records.
Acceptance Criteria:
• One or more input parameters is malformed
• Page Size is greater than 1,000 (the maximum

allowable page size)

Affected Resources:
• All

5. Proposed:
404 (Not Found)

Issue
#174

Situation:
Call to an unauthenticated resource API
Call to Get Product Detail is made with a non-existent
productId

Affected Resources:
• Get Products
• Get Product Detail.

37 | P a g e

HTTP Status Code Source Error Scenario Affected Resources

GET https://data.holder.com.au/cds-
au/v1/banking/products/NonExistentProductID

6. Proposed:
None provided

Issue
#174

Situation:
Call to an authenticated resource API.
Call to Get Account Detail or Get Transaction Detail is
made with a non-existent identifier.
Acceptance Criteria:
• Consent is valid
• Account or Transaction ID does not exist

Affected Resources:
• Get Account Detail
• Get Account Balance
• Get Transactions
• Get Transaction Detail
• Get Direct Debits For Account
• Get Scheduled Payments For Account
• Get Payees Detail
• Delete CDR Arrangements

7. Options Proposed:
• 403 (Forbidden) or
• 422 (Unprocessable

Entity)

Issue
#118

Situation
Status of the DR and or the software product changes but
the DR continues to call the DH with a valid access token
and the consumer's consent is still valid
Acceptance Criteria:
• ADR status (or Software Product Status) is not Active
• Consumer consent is still active
• DH has not yet withdrawn or cleaned up consent

Affected Resources:
• All authenticated APIs.

8. Options Proposed:
• 200 (OK) or
• 400 (Bad Request)

or

Issue
#141

Situation
An ADR requests transactions are filtered for an account
by specifying a text filter when calling Get Transactions For
Account.

Affected Resources:
• Get Transactions For Account

38 | P a g e

HTTP Status Code Source Error Scenario Affected Resources

• 422 (Unprocessable
Entity)

Acceptance Criteria:
• ADR uses the "text" filter query
• DH does not support text filtering

9. Expected:
• 200 (OK) or
• 422 (Unprocessable

Entity)

Issue
#133

Situation
An ADR requests an account resource where one or more
accounts requested cannot be shared because it is in a
frozen/suspended state by the DH.
Acceptance Criteria:
• Consent is valid
• Account(s) are associated to consent
• Account(s) have a Frozen/Suspended status.

Affected Resources:
• Get Account Detail
• Get Account Balance
• Get Transactions
• Get Transaction Detail
• Get Direct Debits For Account
• Get Scheduled Payments For Account
• Get Payees Detail

10. Expected:
• 422 (Unprocessable

Entity)

Issue #36 Situation
GET request to /banking/accounts/{accountId} with an
invalid accountID

Affected Resources:
• Get Account Detail

11. Expected:
• 200 (OK)

with empty
"accounts" list

Issue 117 Situation
Request to Get Accounts when consent has no associated
available accounts

Affected Resources:
• Get Accounts

12. Proposed:
• 400 (Bad Request)

DP 68 Situation
Brand Name is invalid: the "brand" query parameter is not
a valid brand for the data holder

Affected Resources:
• Get Products

39 | P a g e

HTTP Status Code Source Error Scenario Affected Resources

13. Proposed:
• 400 (Bad Request)

DP 68 Situation
Product Category is Invalid: the "product-category" query
parameter is not a valid product category

Affected Resources:
• Get Products
• Get Accounts
• Get Bulk Balances
• Get Bulk Direct Debits
• Get Scheduled Payments Bulk

14. Proposed:
• 400 (Bad Request)

DP 68 Situation
Product Category is Invalid: the "product-category" query
parameter is not offered by the data holder

Affected Resources:
• Get Products
• Get Accounts
• Get Bulk Balances
• Get Bulk Direct Debits
• Get Scheduled Payments Bulk

15. Proposed:
• 422 (Unprocessable

Entity)

DP 68 Situation
Page out of range (e.g Valid pages are 5 and the client
requested 10)

Affected Resources:
• All

16. Proposed:
• 422 (Unprocessable

Entity)

DP 68 Situation
Page size is greater than max (page_size > 1000)

Affected Resources:
• All

17. Proposed:
• 400 (Bad Request)

DP 68 Situation
Page Number/Page size not a positive Integer

Affected Resources:
• All

18. Proposed: DP 68 Situation Affected Resources:

40 | P a g e

HTTP Status Code Source Error Scenario Affected Resources

• 400 (Bad Request) x-min-v or x-v are not an Integer (e.g. x-min-v=foo, x-
v=bar)

• All

19. Proposed:
• 400 (Bad Request)

DP 68 Situation
x-min-v or x-v are not a Positive Integer (they are an
Integer but <= 0)

Affected Resources:
• All

20. Proposed:
• 406 (Not

Acceptable)

DP 68 Situation
Both x-min-v and x-v are Positive Integers but the range
between them is not a supported version

Affected Resources:
• All

21. Expected:
• 200 (OK)

Should respond
using the highest
supported version
of the endpoint
being called

DP 68 Situation
Valid version between x-min-v and x-v however x-v is not
an implemented version.
Data Holders supports x-min-v or higher however it does
not support up to the requested x-v version

Affected Resources:
• All

22. Expected:
• 404 (Not Found)

DP 68 Situation
Non existent Product ID (in get Product Details)

Affected Resources:
• Get Product Detail

23. Expected:
• 200 (OK)

(Ignore the trailing
slash)

DP 68 Situation
Trailing / in a GET Products request

Affected Resources:
• All

41 | P a g e

HTTP Status Code Source Error Scenario Affected Resources

24. Expected:
• 200 (OK)

(0 Records)

DP 68 Situation
No matching products when filters/parameters are
specified

Affected Resources:
• All using query parameter filters other than

the "text" filter

25. Proposed:
• 400 (Bad Request)

DP 68 Situation
Product ID is an Invalid ASCII String

Affected Resources:
• All

