forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_ir_printer.cpp
98 lines (80 loc) · 2.4 KB
/
test_ir_printer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
#include <stdexcept>
#include "test/cpp/tensorexpr/test_base.h"
#include <torch/csrc/jit/tensorexpr/expr.h>
#include <torch/csrc/jit/tensorexpr/ir.h>
#include <torch/csrc/jit/tensorexpr/ir_printer.h>
#include <torch/csrc/jit/tensorexpr/loopnest.h>
#include <torch/csrc/jit/tensorexpr/tensor.h>
#include <torch/csrc/jit/testing/file_check.h>
#include <sstream>
namespace torch {
namespace jit {
using namespace torch::jit::tensorexpr;
void testIRPrinterBasicValueTest() {
KernelScope kernel_scope;
ExprHandle a = IntImm::make(2), b = IntImm::make(3);
ExprHandle c = Add::make(a, b);
std::stringstream ss;
ss << c;
ASSERT_EQ(ss.str(), "2 + 3");
}
void testIRPrinterBasicValueTest02() {
KernelScope kernel_scope;
ExprHandle a(2.0f);
ExprHandle b(3.0f);
ExprHandle c(4.0f);
ExprHandle d(5.0f);
ExprHandle f = (a + b) - (c + d);
std::stringstream ss;
ss << f;
ASSERT_EQ(ss.str(), "(2.f + 3.f) - (4.f + 5.f)");
}
void testIRPrinterCastTest() {
KernelScope kernel_scope;
VarHandle x("x", kHalf);
VarHandle y("y", kFloat);
ExprHandle body = ExprHandle(2.f) +
(Cast::make(kFloat, x) * ExprHandle(3.f) + ExprHandle(4.f) * y);
std::stringstream ss;
ss << body;
ASSERT_EQ(ss.str(), "2.f + (float(x) * 3.f + 4.f * y)");
}
void testIRPrinterFunctionName() {
KernelScope kernel_scope;
int M = 4;
int N = 20;
Tensor* producer = Compute(
"producer",
{{M, "m"}, {N, "n"}},
[&](const ExprHandle& m, const ExprHandle& n) { return m * n; });
Tensor* chunk_0 = Compute(
"chunk",
{{M, "m"}, {N / 2, "n"}},
[&](const ExprHandle& m, const ExprHandle& n) {
return producer->call(m, n);
});
Tensor* chunk_1 = Compute(
"chunk",
{{M, "m"}, {N / 2, "n"}},
[&](const ExprHandle& m, const ExprHandle& n) {
return producer->call(m, n + ExprHandle(N / 2));
});
Tensor* consumer = Compute(
"consumer",
{{M, "i"}, {N / 2, "j"}},
[&](const ExprHandle& i, const ExprHandle& j) {
return i * chunk_1->call(i, j);
});
LoopNest l({chunk_0, chunk_1, consumer});
auto* body = l.root_stmt();
std::stringstream ss;
ss << *body;
const std::string& verification_pattern =
R"IR(
# CHECK: for (int i
# CHECK: for (int j
# CHECK: consumer[i, j] = i * (chunk_1(i, j)IR";
torch::jit::testing::FileCheck().run(verification_pattern, ss.str());
}
} // namespace jit
} // namespace torch