-
Notifications
You must be signed in to change notification settings - Fork 0
/
introduction.tex
144 lines (129 loc) · 4.44 KB
/
introduction.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
\section{Introduction}%
\frame{\tableofcontents[currentsection]}
\begin{frame}{Clinical Trial Design has Many Gatekeepers}
\begin{figure}
\centering
\includegraphics[width=\linewidth]{figs/motivation-3.png}
\end{figure}
\end{frame}
\begin{frame}{Our Goal: Automate Analysis of Simulations}
\begin{figure}
\centering
\includegraphics[width=\linewidth]{figs/motivation-4.png}
\end{figure}
\end{frame}
\begin{frame}{Our Goals: Recap}
\begin{itemize}
\item Predictable and fast trial design innovation!
\item Automate design validation.
\item Rigorous analysis for complex designs.
\end{itemize}
\end{frame}
\begin{frame}{Simulation Raises New Challenges}
\begin{itemize}
\item Simulation constrained to \textbf{finite} number of null points.
\begin{center}
\textbf{How do we deal with composite nulls?}
\end{center}
\item Simulation has Monte Carlo error.
\begin{center}
\textbf{How do we deal with Monte Carlo error?}
\end{center}
\item Bounded computing power.
\begin{center}
\textbf{How many points in the null space to simulate?}
\end{center}
\begin{center}
\textbf{Are the simulations even tractable?}
\end{center}
\end{itemize}
\end{frame}
\begin{frame}{Intuition for Composite Null}
\begin{figure}
\centering
\includegraphics[width=0.95\linewidth]{figs/approach_1.pdf}
\end{figure}
\end{frame}
\begin{frame}{Partition $\Theta$ into Tiles with Representatives}
\begin{figure}
\centering
\includegraphics[width=0.95\linewidth]{figs/approach_2.pdf}
\end{figure}
\end{frame}
\begin{frame}{Simulate on each Representative}
\begin{figure}
\centering
\includegraphics[width=0.95\linewidth]{figs/approach_3.pdf}
\end{figure}
\end{frame}
\begin{frame}{Extend Simulation Information to Tile}
\begin{figure}
\centering
\includegraphics[width=0.95\linewidth]{figs/approach_4.pdf}
\end{figure}
\end{frame}
\begin{frame}{Divide-and-Conquer for Guarantees on All of $\Theta$}
\begin{figure}
\centering
\includegraphics[width=0.95\linewidth]{figs/approach_5.pdf}
\end{figure}
\end{frame}
\begin{frame}{Our Approach: Proof-by-Simulation}
\textbf{General Workflow:}
\begin{itemize}
\item Let $\Theta$ be a (bounded) null hypothesis space.
\item Partition $\Theta$ into tiles $\set{\Theta_i}_{i=1}^I$
with representatives $\set{\theta_i}_{i=1}^I$.
\item Simulate the design on each $\theta_i$ and output test statistics.
\item Use our method \textbf{Continuous Simulation Extension} (CSE) to
\emph{extend} information at each $\theta_i$ to any other point in $\Theta_i$.
\item Divide-and-conquer to get guarantees on \emph{all of $\Theta$}.
\end{itemize}
\end{frame}
\begin{frame}{Method 1: Validation for Point-wise Confidence}
\begin{figure}
\centering
\includegraphics[width=\linewidth]{figs/validation_scheme.png}
\end{figure}
\end{frame}
\begin{frame}{Method 1: Validation for Point-wise Confidence}
\begin{itemize}
\item \textbf{Validation}:
Construct bounds $(\hat{l}(\cdot), \hat{u}(\cdot))$
for the true Type I Error, $f(\cdot)$, with confidence $1-\delta$:
\begin{align*}
\forall \theta \in \Theta ,\,
&\prob\pr{\hat{l}(\theta) \leq f(\theta)} \geq 1-\delta \text{ and } \\
&\prob\pr{\hat{u}(\theta) \geq f(\theta)} \geq 1-\delta
\end{align*}
\item Point-wise guarantee is appropriate since
there is only one \emph{true} value of $\theta$.
\end{itemize}
\end{frame}
\begin{frame}{Method 2: Calibration for Type I Error Proof}
\begin{figure}
\centering
\includegraphics[width=\linewidth]{figs/calibration_scheme.png}
\end{figure}
\end{frame}
\begin{frame}{Method 2: Calibration for Type I Error Proof}
\begin{itemize}
\item \textbf{Calibration}:
Select a (random) critical threshold, $\hat{\lambda}^*$, such that
\begin{align*}
\forall \theta \in \Theta,\,
\EEE\br{f_{\hat{\lambda}^*}(\theta)}
\leq
\alpha
\end{align*}
where $f_{\lambda}(\theta)$ is the Type I Error at $\theta$
using threshold $\lambda$.
\end{itemize}
\end{frame}
\begin{frame}{Random $\hat{\lambda}^*$ is acceptable}
\begin{itemize}
\item Guarantee is \textbf{overall} valid (regulators want this!).
\item Practitioners \textbf{already use} simulations to evaluate designs.
\item Our approach is \textbf{strictly stronger} because we can give guarantees.
\end{itemize}
\end{frame}