diff --git a/utilities/report_qc/SQANTI3_report.R b/utilities/report_qc/SQANTI3_report.R index 72cc951..daf6d31 100755 --- a/utilities/report_qc/SQANTI3_report.R +++ b/utilities/report_qc/SQANTI3_report.R @@ -1558,301 +1558,313 @@ if (!all(is.na(data.class$dist_to_CAGE_peak))) { # theme(axis.text.x = element_text(angle = 90, hjust = 1)) ## FSM cage hist number of Isoforms - cage_hist_FSM=ggplot(data=subset(data.FSM, !is.na(dist_CAGE_Cat)), aes(x=dist_CAGE_Cat, fill=structural_category)) + - geom_bar(aes(alpha=within_CAGE_peak), color="black", size=0.3, fill=myPalette[1]) + - mytheme + - scale_x_discrete(drop=F, labels=breaks_labels) + - scale_y_continuous( expand = expansion(mult = c(0,0.1)) ) + - theme(legend.position="bottom") + - ylab("Number of transcripts")+ - xlab("Distance to CAGE peak, bp")+ - labs( title="Distance to CAGE Peak of Multi-Exonic FSM ", - subtitle="Negative values indicate downstream of annotated CAGE peak\n\n", - alpha = "TSS within a CAGE peak") + - theme(axis.text.x = element_text(angle = 60, hjust = 1)) - - cage_hist_FSM_perc=ggplot(data=subset(data.FSM, !is.na(dist_CAGE_Cat)), aes(x=dist_CAGE_Cat , fill=structural_category)) + - geom_bar(aes(y = (..count..)/sum(..count..), alpha=within_CAGE_peak), color="black", size=0.3, fill=myPalette[1]) + - scale_y_continuous(breaks=c(0.0,0.25,0.50,0.75,1), - labels=c("0","25","50","75","100"), - expand = expansion(mult = c(0,0.1))) + - mytheme + - theme(legend.position="bottom") + - scale_x_discrete(drop=F, labels=breaks_labels) + - ylab("Transcripts, %")+ - xlab("Distance to CAGE peak, bp")+ - labs( title="Distance to CAGE Peak of Multi-Exonic FSM", - subtitle="Negative values indicate downstream of annotated CAGE peak\n\n", - alpha = "TSS within a CAGE peak") + - theme(axis.text.x = element_text(angle = 60, hjust = 1)) - - cage.titles.FSM<-list("Distance to CAGE Peak of Multi-Exonic FSM\n\nAlternative 3' End", - "Distance to CAGE Peak of Multi-Exonic FSM\n\nAlternative 3'5' End", - "Distance to CAGE Peak of Multi-Exonic FSM\n\nAlternative 5' End", - "Distance to CAGE Peak of Multi-Exonic FSM\n\nReference Match") - cage.FSM.list = list() - cage.FSM.list.a = list() - for(i in 1:length(subcategories.FSM)){ - c<-data.frame(subcategories.FSM[i]) - if (!(dim(c))[1]==0 & !all(is.na(c$dist_to_CAGE_peak))){ - #diff_max=11000 - #diff_breaks <- c(-(diff_max+1), seq(-200, 100, by = 20), diff_max+1); - #c$dist_to_cage_peak[is.na(c$dist_to_cage_peak)] <- -11000 - c$dist_CAGE_Cat = cut(-(c$dist_to_CAGE_peak), breaks = diff_breaks); - cage.FSM.s=ggplot(data=subset(c, !is.na(dist_CAGE_Cat)), aes(x=dist_CAGE_Cat , fill=structural_category)) + - geom_bar(aes(alpha=within_CAGE_peak), color="black", size=0.3, fill=myPalette[1]) + - mytheme + - scale_x_discrete(drop=F, labels=breaks_labels) + - scale_y_continuous( expand = expansion(mult = c(0,0.1)) ) + - theme(legend.position="bottom") + - ylab("Number of transcripts")+ - xlab("Distance to CAGE peak, bp")+ - labs( title=cage.titles.FSM[i], - subtitle="Negative values indicate downstream of annotated CAGE peak\n\n", - alpha = "TSS within a CAGE peak") + - theme(axis.text.x = element_text(angle = 60, hjust = 1)) - cage.FSM.s.perc=ggplot(data=subset(c, !is.na(dist_CAGE_Cat)), aes(x=dist_CAGE_Cat , fill=structural_category)) + - geom_bar(aes(y = (..count..)/sum(..count..), alpha=within_CAGE_peak), color="black", size=0.3, fill=myPalette[1]) + - scale_y_continuous(breaks=c(0.0,0.25,0.50,0.75,1), - labels=c("0","25","50","75","100"), - expand = expansion(mult = c(0,0.1))) + - mytheme + - scale_x_discrete(drop=F, labels=breaks_labels) + - theme(legend.position="bottom") + - ylab("Transcripts, %")+ - xlab("Distance to CAGE peak, bp")+ - labs( title=cage.titles.FSM[i], - subtitle="Negative values indicate downstream of annotated CAGE peak\n\n", - alpha = "TSS within a CAGE peak") + - theme(axis.text.x = element_text(angle = 60, hjust = 1)) - cage.FSM.list[[i]] = cage.FSM.s - cage.FSM.list.a[[i]] = cage.FSM.s.perc + + if(nrow(data.FSM)){ + cage_hist_FSM=ggplot(data=subset(data.FSM, !is.na(dist_CAGE_Cat)), aes(x=dist_CAGE_Cat, fill=structural_category)) + + geom_bar(aes(alpha=within_CAGE_peak), color="black", size=0.3, fill=myPalette[1]) + + mytheme + + scale_x_discrete(drop=F, labels=breaks_labels) + + scale_y_continuous( expand = expansion(mult = c(0,0.1)) ) + + theme(legend.position="bottom") + + ylab("Number of transcripts")+ + xlab("Distance to CAGE peak, bp")+ + labs( title="Distance to CAGE Peak of Multi-Exonic FSM ", + subtitle="Negative values indicate downstream of annotated CAGE peak\n\n", + alpha = "TSS within a CAGE peak") + + theme(axis.text.x = element_text(angle = 60, hjust = 1)) + + cage_hist_FSM_perc=ggplot(data=subset(data.FSM, !is.na(dist_CAGE_Cat)), aes(x=dist_CAGE_Cat , fill=structural_category)) + + geom_bar(aes(y = (..count..)/sum(..count..), alpha=within_CAGE_peak), color="black", size=0.3, fill=myPalette[1]) + + scale_y_continuous(breaks=c(0.0,0.25,0.50,0.75,1), + labels=c("0","25","50","75","100"), + expand = expansion(mult = c(0,0.1))) + + mytheme + + theme(legend.position="bottom") + + scale_x_discrete(drop=F, labels=breaks_labels) + + ylab("Transcripts, %")+ + xlab("Distance to CAGE peak, bp")+ + labs( title="Distance to CAGE Peak of Multi-Exonic FSM", + subtitle="Negative values indicate downstream of annotated CAGE peak\n\n", + alpha = "TSS within a CAGE peak") + + theme(axis.text.x = element_text(angle = 60, hjust = 1)) + + cage.titles.FSM<-list("Distance to CAGE Peak of Multi-Exonic FSM\n\nAlternative 3' End", + "Distance to CAGE Peak of Multi-Exonic FSM\n\nAlternative 3'5' End", + "Distance to CAGE Peak of Multi-Exonic FSM\n\nAlternative 5' End", + "Distance to CAGE Peak of Multi-Exonic FSM\n\nReference Match") + cage.FSM.list = list() + cage.FSM.list.a = list() + for(i in 1:length(subcategories.FSM)){ + c<-data.frame(subcategories.FSM[i]) + if (!(dim(c))[1]==0 & !all(is.na(c$dist_to_CAGE_peak))){ + #diff_max=11000 + #diff_breaks <- c(-(diff_max+1), seq(-200, 100, by = 20), diff_max+1); + #c$dist_to_cage_peak[is.na(c$dist_to_cage_peak)] <- -11000 + c$dist_CAGE_Cat = cut(-(c$dist_to_CAGE_peak), breaks = diff_breaks); + cage.FSM.s=ggplot(data=subset(c, !is.na(dist_CAGE_Cat)), aes(x=dist_CAGE_Cat , fill=structural_category)) + + geom_bar(aes(alpha=within_CAGE_peak), color="black", size=0.3, fill=myPalette[1]) + + mytheme + + scale_x_discrete(drop=F, labels=breaks_labels) + + scale_y_continuous( expand = expansion(mult = c(0,0.1)) ) + + theme(legend.position="bottom") + + ylab("Number of transcripts")+ + xlab("Distance to CAGE peak, bp")+ + labs( title=cage.titles.FSM[i], + subtitle="Negative values indicate downstream of annotated CAGE peak\n\n", + alpha = "TSS within a CAGE peak") + + theme(axis.text.x = element_text(angle = 60, hjust = 1)) + cage.FSM.s.perc=ggplot(data=subset(c, !is.na(dist_CAGE_Cat)), aes(x=dist_CAGE_Cat , fill=structural_category)) + + geom_bar(aes(y = (..count..)/sum(..count..), alpha=within_CAGE_peak), color="black", size=0.3, fill=myPalette[1]) + + scale_y_continuous(breaks=c(0.0,0.25,0.50,0.75,1), + labels=c("0","25","50","75","100"), + expand = expansion(mult = c(0,0.1))) + + mytheme + + scale_x_discrete(drop=F, labels=breaks_labels) + + theme(legend.position="bottom") + + ylab("Transcripts, %")+ + xlab("Distance to CAGE peak, bp")+ + labs( title=cage.titles.FSM[i], + subtitle="Negative values indicate downstream of annotated CAGE peak\n\n", + alpha = "TSS within a CAGE peak") + + theme(axis.text.x = element_text(angle = 60, hjust = 1)) + cage.FSM.list[[i]] = cage.FSM.s + cage.FSM.list.a[[i]] = cage.FSM.s.perc + } } + } - cage_hist_ISM=ggplot(data=subset(data.ISM, !is.na(dist_CAGE_Cat)), aes(x=dist_CAGE_Cat , fill=structural_category)) + - geom_bar(aes(alpha=within_CAGE_peak), color="black", size=0.3, fill=myPalette[2]) + - # scale_y_continuous(expand = c(0,0), limits = c(0,max_height))+ - mytheme + - scale_x_discrete(drop=F, labels=breaks_labels) + - scale_y_continuous( expand = expansion(mult = c(0,0.1)) ) + - theme(legend.position="bottom") + - # scale_x_discrete(limits = c(-50,50)) + - ylab("Number of transcripts")+ - xlab("Distance to CAGE peak, bp")+ - labs( title="Distance to CAGE Peak of Multi-Exonic ISM", - subtitle="Negative values indicate downstream of annotated CAGE peak\n\n", - alpha = "TSS within a CAGE peak") + - theme(axis.text.x = element_text(angle = 60, hjust = 1)) - - cage_hist_ISM_perc=ggplot(data=subset(data.ISM, !is.na(dist_CAGE_Cat)), aes(x=dist_CAGE_Cat , fill=structural_category)) + - geom_bar(aes(y = (..count..)/sum(..count..), alpha=within_CAGE_peak), color="black", size=0.3, fill=myPalette[2]) + - scale_y_continuous(breaks=c(0.0,0.25,0.50,0.75,1), - labels=c("0","25","50","75","100"), - expand = expansion(mult = c(0,0.1))) + - scale_x_discrete(drop=F, labels=breaks_labels) + - mytheme + theme(legend.position="bottom") + - # scale_x_discrete(limits = c(-50,50)) + - ylab("Transcripts, %")+ - xlab("Distance to CAGE Peak, bp")+ - labs( title="Distance to CAGE Peak of Multi-Exonic ISM", - subtitle="Negative values indicate downstream of annotated CAGE peak\n\n", - alpha = "TSS within a CAGE peak") + - theme(axis.text.x = element_text(angle = 60, hjust = 1)) - - cage.titles.ISM<-list("Distance to CAGE Peak of Multi-Exonic ISM\n\n3' Fragment", - "Distance to CAGE Peak of Multi-Exonic ISM\n\nInternal Fragment", - "Distance to CAGE Peak of Multi-Exonic ISM\n\n5' Fragment", - "Distance to CAGE Peak of Multi-Exonic ISM\n\nIntron Retention") - - - cage.ISM.list = list() - cage.ISM.list.a = list() - for(i in 1:length(subcategories.ISM)){ - c<-data.frame(subcategories.ISM[i]) - if (!(dim(c))[1]==0 & !all(is.na(c$dist_to_CAGE_peak))){ - #diff_max=11000 - #diff_breaks <- c(-(diff_max+1), seq(-500, 500, by = 20), diff_max+1); - #c$dist_to_cage_peak[is.na(c$dist_to_cage_peak)] <- -11000 - c$dist_CAGE_Cat = cut(-(c$dist_to_CAGE_peak), breaks = diff_breaks); - cage.ISM.s=ggplot(data=subset(c, !is.na(dist_CAGE_Cat)), aes(x=dist_CAGE_Cat , fill=structural_category)) + - geom_bar(aes(alpha=within_CAGE_peak), color="black", size=0.3, fill=myPalette[2]) + - mytheme + - scale_x_discrete(drop=F, labels=breaks_labels) + - scale_y_continuous( expand = expansion(mult = c(0,0.1)) ) + - theme(legend.position="bottom") + - ylab("Number of transcripts")+ - xlab("Distance to CAGE peak, bp")+ - labs( title=cage.titles.ISM[i], - subtitle="Negative values indicate downstream of annotated CAGE peak\n\n", - alpha = "TSS within a CAGE peak") + - theme(axis.text.x = element_text(angle = 60, hjust = 1)) - cage.ISM.s.perc=ggplot(data=subset(c, !is.na(dist_CAGE_Cat)), aes(x=dist_CAGE_Cat , fill=structural_category)) + - geom_bar(aes(y = (..count..)/sum(..count..), alpha=within_CAGE_peak), color="black", size=0.3, fill=myPalette[2]) + - scale_y_continuous(breaks=c(0.0,0.25,0.50,0.75,1), - labels=c("0","25","50","75","100"), - expand = expansion(mult = c(0,0.1))) + - mytheme + - scale_x_discrete(drop=F, labels=breaks_labels) + - theme(legend.position="bottom") + - ylab("Transcripts, %")+ - xlab("Distance to CAGE peak, bp")+ - labs( title=cage.titles.ISM[i], - subtitle="Negative values indicate downstream of annotated CAGE peak\n\n", - alpha = "TSS within a CAGE peak") + - theme(axis.text.x = element_text(angle = 60, hjust = 1)) - cage.ISM.list[[i]] = cage.ISM.s - cage.ISM.list.a[[i]] = cage.ISM.s.perc + if(nrow(data.ISM)){ + cage_hist_ISM=ggplot(data=subset(data.ISM, !is.na(dist_CAGE_Cat)), aes(x=dist_CAGE_Cat , fill=structural_category)) + + geom_bar(aes(alpha=within_CAGE_peak), color="black", size=0.3, fill=myPalette[2]) + + # scale_y_continuous(expand = c(0,0), limits = c(0,max_height))+ + mytheme + + scale_x_discrete(drop=F, labels=breaks_labels) + + scale_y_continuous( expand = expansion(mult = c(0,0.1)) ) + + theme(legend.position="bottom") + + # scale_x_discrete(limits = c(-50,50)) + + ylab("Number of transcripts")+ + xlab("Distance to CAGE peak, bp")+ + labs( title="Distance to CAGE Peak of Multi-Exonic ISM", + subtitle="Negative values indicate downstream of annotated CAGE peak\n\n", + alpha = "TSS within a CAGE peak") + + theme(axis.text.x = element_text(angle = 60, hjust = 1)) + + cage_hist_ISM_perc=ggplot(data=subset(data.ISM, !is.na(dist_CAGE_Cat)), aes(x=dist_CAGE_Cat , fill=structural_category)) + + geom_bar(aes(y = (..count..)/sum(..count..), alpha=within_CAGE_peak), color="black", size=0.3, fill=myPalette[2]) + + scale_y_continuous(breaks=c(0.0,0.25,0.50,0.75,1), + labels=c("0","25","50","75","100"), + expand = expansion(mult = c(0,0.1))) + + scale_x_discrete(drop=F, labels=breaks_labels) + + mytheme + theme(legend.position="bottom") + + # scale_x_discrete(limits = c(-50,50)) + + ylab("Transcripts, %")+ + xlab("Distance to CAGE Peak, bp")+ + labs( title="Distance to CAGE Peak of Multi-Exonic ISM", + subtitle="Negative values indicate downstream of annotated CAGE peak\n\n", + alpha = "TSS within a CAGE peak") + + theme(axis.text.x = element_text(angle = 60, hjust = 1)) + + cage.titles.ISM<-list("Distance to CAGE Peak of Multi-Exonic ISM\n\n3' Fragment", + "Distance to CAGE Peak of Multi-Exonic ISM\n\nInternal Fragment", + "Distance to CAGE Peak of Multi-Exonic ISM\n\n5' Fragment", + "Distance to CAGE Peak of Multi-Exonic ISM\n\nIntron Retention") + + + cage.ISM.list = list() + cage.ISM.list.a = list() + for(i in 1:length(subcategories.ISM)){ + c<-data.frame(subcategories.ISM[i]) + if (!(dim(c))[1]==0 & !all(is.na(c$dist_to_CAGE_peak))){ + #diff_max=11000 + #diff_breaks <- c(-(diff_max+1), seq(-500, 500, by = 20), diff_max+1); + #c$dist_to_cage_peak[is.na(c$dist_to_cage_peak)] <- -11000 + c$dist_CAGE_Cat = cut(-(c$dist_to_CAGE_peak), breaks = diff_breaks); + cage.ISM.s=ggplot(data=subset(c, !is.na(dist_CAGE_Cat)), aes(x=dist_CAGE_Cat , fill=structural_category)) + + geom_bar(aes(alpha=within_CAGE_peak), color="black", size=0.3, fill=myPalette[2]) + + mytheme + + scale_x_discrete(drop=F, labels=breaks_labels) + + scale_y_continuous( expand = expansion(mult = c(0,0.1)) ) + + theme(legend.position="bottom") + + ylab("Number of transcripts")+ + xlab("Distance to CAGE peak, bp")+ + labs( title=cage.titles.ISM[i], + subtitle="Negative values indicate downstream of annotated CAGE peak\n\n", + alpha = "TSS within a CAGE peak") + + theme(axis.text.x = element_text(angle = 60, hjust = 1)) + cage.ISM.s.perc=ggplot(data=subset(c, !is.na(dist_CAGE_Cat)), aes(x=dist_CAGE_Cat , fill=structural_category)) + + geom_bar(aes(y = (..count..)/sum(..count..), alpha=within_CAGE_peak), color="black", size=0.3, fill=myPalette[2]) + + scale_y_continuous(breaks=c(0.0,0.25,0.50,0.75,1), + labels=c("0","25","50","75","100"), + expand = expansion(mult = c(0,0.1))) + + mytheme + + scale_x_discrete(drop=F, labels=breaks_labels) + + theme(legend.position="bottom") + + ylab("Transcripts, %")+ + xlab("Distance to CAGE peak, bp")+ + labs( title=cage.titles.ISM[i], + subtitle="Negative values indicate downstream of annotated CAGE peak\n\n", + alpha = "TSS within a CAGE peak") + + theme(axis.text.x = element_text(angle = 60, hjust = 1)) + cage.ISM.list[[i]] = cage.ISM.s + cage.ISM.list.a[[i]] = cage.ISM.s.perc + } } } - cage_hist_NIC=ggplot(data=subset(data.NIC, !is.na(dist_CAGE_Cat)), aes(x=dist_CAGE_Cat , fill=structural_category)) + - geom_bar( aes(alpha=within_CAGE_peak),color="black", size=0.3, fill=myPalette[3]) + - # scale_y_continuous(expand = c(0,0), limits = c(0,max_height))+ - mytheme + theme(legend.position="bottom") + - scale_x_discrete(drop=F, labels=breaks_labels) + - scale_y_continuous( expand = expansion(mult = c(0,0.1)) ) + - ylab("Number of transcripts")+ - xlab("Distance to CAGE peak, bp")+ - labs( title="Distance to CAGE Peak of Multi-Exonic NIC", - subtitle="Negative values indicate downstream of annotated CAGE peak\n\n", - alpha = "TSS within a CAGE peak") + - theme(axis.text.x = element_text(angle = 60, hjust = 1)) - - cage_hist_NIC_perc=ggplot(data=subset(data.NIC, !is.na(dist_CAGE_Cat)), aes(x=dist_CAGE_Cat , fill=structural_category)) + - geom_bar( aes(y = (..count..)/sum(..count..),alpha=within_CAGE_peak),color="black", size=0.3, fill=myPalette[3]) + - scale_y_continuous(breaks=c(0.0,0.25,0.50,0.75,1), - labels=c("0","25","50","75","100"), - expand = expansion(mult = c(0,0.1))) + - mytheme + theme(legend.position="bottom") + - scale_x_discrete(drop=F, labels=breaks_labels) + - # scale_x_discrete(limits = c(-50,50)) + - ylab("Transcripts, %")+ - xlab("Distance to CAGE peak, bp")+ - labs( title="Distance to CAGE Peak of Multi-Exonic NIC", - subtitle="Negative values indicate downstream of annotated CAGE peak\n\n", - alpha = "TSS within a CAGE peak") + - theme(axis.text.x = element_text(angle = 60, hjust = 1)) - - cage.titles.NIC<-list("Distance to CAGE Peak of Multi-Exonic NIC\n\nCombination of Annotated Junctions", - "Distance to CAGE Peak of Multi-Exonic NIC\n\nCombination of Annotated Splice Sites", - "Distance to CAGE Peak of Multi-Exonic NIC\n\nIntron Retention", - "Distance to CAGE Peak of Multi-Exonic NIC\n\nMono-Exon by Intron Retention") - cage.NIC.list = list() - cage.NIC.list.a = list() - for(i in 1:length(subcategories.NIC)){ - c<-data.frame(subcategories.NIC[i]) - if (!(dim(c))[1]==0 & !all(is.na(c$dist_to_CAGE_peak))){ - #diff_max=11000 - #diff_breaks <- c(-(diff_max+1), seq(-500, 500, by = 20), diff_max+1); - #c$dist_to_cage_peak[is.na(c$dist_to_cage_peak)] <- -11000 - c$dist_CAGE_Cat = cut(-(c$dist_to_CAGE_peak), breaks = diff_breaks); - cage.NIC.s=ggplot(data=subset(c, !is.na(dist_CAGE_Cat)), aes(x=dist_CAGE_Cat , fill=structural_category)) + - geom_bar(aes(alpha=within_CAGE_peak), color="black", size=0.3, fill=myPalette[3]) + - mytheme + - scale_x_discrete(drop=F, labels=breaks_labels) + - scale_y_continuous( expand = expansion(mult = c(0,0.1)) ) + - theme(legend.position="bottom") + - ylab("Number of transcripts")+ - xlab("Distance to CAGE peak, bp")+ - labs( title=cage.titles.NIC[i], - subtitle="Negative values indicate downstream of annotated CAGE peak\n\n", - alpha = "TSS within a CAGE peak") + - theme(axis.text.x = element_text(angle = 60, hjust = 1)) - cage.NIC.s.perc=ggplot(data=subset(c, !is.na(dist_CAGE_Cat)), aes(x=dist_CAGE_Cat , fill=structural_category)) + - geom_bar(aes(y = (..count..)/sum(..count..), alpha=within_CAGE_peak), color="black", size=0.3, fill=myPalette[3]) + - scale_y_continuous(breaks=c(0.0,0.25,0.50,0.75,1), - labels=c("0","25","50","75","100"), - expand = expansion(mult = c(0,0.1))) + - mytheme + - scale_x_discrete(drop=F, labels=breaks_labels) + - theme(legend.position="bottom") + - ylab("Transcripts, %")+ - xlab("Distance to CAGE peak, bp")+ - labs( title=cage.titles.NIC[i], - subtitle="Negative values indicate downstream of annotated CAGE peak\n\n", - alpha = "TSS within a CAGE peak") + - theme(axis.text.x = element_text(angle = 60, hjust = 1)) - cage.NIC.list[[i]] = cage.NIC.s - cage.NIC.list.a[[i]] = cage.NIC.s.perc + if(nrow(data.NIC)){# If there's no data.NIC data, there are no NIC transcripts, so this step is unnecesary + cage_hist_NIC=ggplot(data=subset(data.NIC, !is.na(dist_CAGE_Cat)), aes(x=dist_CAGE_Cat , fill=structural_category)) + + geom_bar( aes(alpha=within_CAGE_peak),color="black", size=0.3, fill=myPalette[3]) + + # scale_y_continuous(expand = c(0,0), limits = c(0,max_height))+ + mytheme + theme(legend.position="bottom") + + scale_x_discrete(drop=F, labels=breaks_labels) + + scale_y_continuous( expand = expansion(mult = c(0,0.1)) ) + + ylab("Number of transcripts")+ + xlab("Distance to CAGE peak, bp")+ + labs( title="Distance to CAGE Peak of Multi-Exonic NIC", + subtitle="Negative values indicate downstream of annotated CAGE peak\n\n", + alpha = "TSS within a CAGE peak") + + theme(axis.text.x = element_text(angle = 60, hjust = 1)) + + cage_hist_NIC_perc=ggplot(data=subset(data.NIC, !is.na(dist_CAGE_Cat)), aes(x=dist_CAGE_Cat , fill=structural_category)) + + geom_bar( aes(y = (..count..)/sum(..count..),alpha=within_CAGE_peak),color="black", size=0.3, fill=myPalette[3]) + + scale_y_continuous(breaks=c(0.0,0.25,0.50,0.75,1), + labels=c("0","25","50","75","100"), + expand = expansion(mult = c(0,0.1))) + + mytheme + theme(legend.position="bottom") + + scale_x_discrete(drop=F, labels=breaks_labels) + + # scale_x_discrete(limits = c(-50,50)) + + ylab("Transcripts, %")+ + xlab("Distance to CAGE peak, bp")+ + labs( title="Distance to CAGE Peak of Multi-Exonic NIC", + subtitle="Negative values indicate downstream of annotated CAGE peak\n\n", + alpha = "TSS within a CAGE peak") + + theme(axis.text.x = element_text(angle = 60, hjust = 1)) + + cage.titles.NIC<-list("Distance to CAGE Peak of Multi-Exonic NIC\n\nCombination of Annotated Junctions", + "Distance to CAGE Peak of Multi-Exonic NIC\n\nCombination of Annotated Splice Sites", + "Distance to CAGE Peak of Multi-Exonic NIC\n\nIntron Retention", + "Distance to CAGE Peak of Multi-Exonic NIC\n\nMono-Exon by Intron Retention") + cage.NIC.list = list() + cage.NIC.list.a = list() + for(i in 1:length(subcategories.NIC)){ + c<-data.frame(subcategories.NIC[i]) + if (!(dim(c))[1]==0 & !all(is.na(c$dist_to_CAGE_peak))){ + #diff_max=11000 + #diff_breaks <- c(-(diff_max+1), seq(-500, 500, by = 20), diff_max+1); + #c$dist_to_cage_peak[is.na(c$dist_to_cage_peak)] <- -11000 + c$dist_CAGE_Cat = cut(-(c$dist_to_CAGE_peak), breaks = diff_breaks); + cage.NIC.s=ggplot(data=subset(c, !is.na(dist_CAGE_Cat)), aes(x=dist_CAGE_Cat , fill=structural_category)) + + geom_bar(aes(alpha=within_CAGE_peak), color="black", size=0.3, fill=myPalette[3]) + + mytheme + + scale_x_discrete(drop=F, labels=breaks_labels) + + scale_y_continuous( expand = expansion(mult = c(0,0.1)) ) + + theme(legend.position="bottom") + + ylab("Number of transcripts")+ + xlab("Distance to CAGE peak, bp")+ + labs( title=cage.titles.NIC[i], + subtitle="Negative values indicate downstream of annotated CAGE peak\n\n", + alpha = "TSS within a CAGE peak") + + theme(axis.text.x = element_text(angle = 60, hjust = 1)) + cage.NIC.s.perc=ggplot(data=subset(c, !is.na(dist_CAGE_Cat)), aes(x=dist_CAGE_Cat , fill=structural_category)) + + geom_bar(aes(y = (..count..)/sum(..count..), alpha=within_CAGE_peak), color="black", size=0.3, fill=myPalette[3]) + + scale_y_continuous(breaks=c(0.0,0.25,0.50,0.75,1), + labels=c("0","25","50","75","100"), + expand = expansion(mult = c(0,0.1))) + + mytheme + + scale_x_discrete(drop=F, labels=breaks_labels) + + theme(legend.position="bottom") + + ylab("Transcripts, %")+ + xlab("Distance to CAGE peak, bp")+ + labs( title=cage.titles.NIC[i], + subtitle="Negative values indicate downstream of annotated CAGE peak\n\n", + alpha = "TSS within a CAGE peak") + + theme(axis.text.x = element_text(angle = 60, hjust = 1)) + cage.NIC.list[[i]] = cage.NIC.s + cage.NIC.list.a[[i]] = cage.NIC.s.perc + } } } - cage_hist_NNC=ggplot(data=subset(data.NNC, !is.na(dist_CAGE_Cat)), aes(x=dist_CAGE_Cat , fill=structural_category)) + - geom_bar(aes(alpha=within_CAGE_peak), color="black", size=0.3, fill=myPalette[4]) + - # scale_y_continuous(expand = c(0,0), limits = c(0,max_height))+ - mytheme + theme(legend.position="bottom") + - # scale_x_discrete(limits = c(-50,50)) + - scale_x_discrete(drop=F, labels=breaks_labels) + - ylab("Number of transcripts")+ - xlab("Distance to CAGE peak, bp")+ - labs( title="Distance to CAGE Peak of Multi-Exonic NNC", - subtitle="Negative values indicate downstream of annotated CAGE peak\n\n", - alpha = "TSS within a CAGE peak") + - theme(axis.text.x = element_text(angle = 60, hjust = 1)) - - cage_hist_NNC_perc=ggplot(data=subset(data.NNC, !is.na(dist_CAGE_Cat)), aes(x=dist_CAGE_Cat , fill=structural_category)) + - geom_bar(aes(y = (..count..)/sum(..count..),alpha=within_CAGE_peak), color="black", size=0.3, fill=myPalette[4]) + - scale_y_continuous(breaks=c(0.0,0.25,0.50,0.75,1), - labels=c("0","25","50","75","100"), - expand = expansion(mult = c(0,0.1))) + - mytheme + theme(legend.position="bottom") + - scale_x_discrete(drop=F, labels=breaks_labels) + - # scale_x_discrete(limits = c(-50,50)) + - ylab("Transcripts, %")+ - xlab("Distance to CAGE peak, bp")+ - labs( title="Distance to CAGE Peak of Multi-Exonic NNC", - subtitle="Negative values indicate downstream of annotated CAGE peak\n\n", - alpha = "TSS within a CAGE peak") + - theme(axis.text.x = element_text(angle = 60, hjust = 1)) - - cage.titles.NNC<-list("Distance to CAGE Peak of Multi-Exonic NNC\n\nCombination of Annotated Junctions", - "Distance to CAGE Peak of Multi-Exonic NNC\n\nCombination of Annotated Splice Sites", - "Distance to CAGE Peak of Multi-Exonic NNC\n\nIntron Retention", - "Distance to CAGE Peak of Multi-Exonic NNC\n\nMono-Exon by Intron Retention", - "Distance to CAGE Peak of Multi-Exonic NNC\n\nAt Least One Annotated Donor/Acceptor") - - cage.NNC.list = list() - cage.NNC.list.a = list() - for(i in 1:length(subcategories.NNC)){ - c<-data.frame(subcategories.NNC[i]) - if (!(dim(c))[1]==0 & !all(is.na(c$dist_to_CAGE_peak))){ - #diff_max=11000 - #diff_breaks <- c(-(diff_max+1), seq(-500, 500, by = 20), diff_max+1); - #c$dist_to_cage_peak[is.na(c$dist_to_cage_peak)] <- -11000 - c$dist_CAGE_Cat = cut(-(c$dist_to_CAGE_peak), breaks = diff_breaks); - cage.NNC.s=ggplot(data=subset(c, !is.na(dist_CAGE_Cat)), aes(x=dist_CAGE_Cat , fill=structural_category)) + - geom_bar(aes(alpha=within_CAGE_peak), color="black", size=0.3, fill=myPalette[4]) + - mytheme + - scale_x_discrete(drop=F, labels=breaks_labels) + - scale_y_continuous( expand = expansion(mult = c(0,0.1)) ) + - theme(legend.position="bottom") + - ylab("Number of transcripts")+ - xlab("Distance to CAGE peak, bp")+ - labs( title=cage.titles.NNC[i], - subtitle="Negative values indicate downstream of annotated CAGE peak\n\n", - alpha = "TSS within a CAGE peak") + - theme(axis.text.x = element_text(angle = 60, hjust = 1)) - cage.NNC.s.perc=ggplot(data=subset(c, !is.na(dist_CAGE_Cat)), aes(x=dist_CAGE_Cat , fill=structural_category)) + - geom_bar(aes(y = (..count..)/sum(..count..), alpha=within_CAGE_peak), color="black", size=0.3, fill=myPalette[4]) + - scale_y_continuous(breaks=c(0.0,0.25,0.50,0.75,1), - labels=c("0","25","50","75","100"), - expand = expansion(mult = c(0,0.1))) + - mytheme + - scale_x_discrete(drop=F, labels=breaks_labels) + - theme(legend.position="bottom") + - ylab("Transcripts, %")+ - xlab("Distance to CAGE peak, bp")+ - labs( title=cage.titles.NNC[i], - subtitle="Negative values indicate downstream of annotated CAGE peak\n\n", - alpha = "TSS within a CAGE peak") + - theme(axis.text.x = element_text(angle = 60, hjust = 1)) - cage.NNC.list[[i]] = cage.NNC.s - cage.NNC.list.a[[i]] = cage.NNC.s.perc + if(nrow(data.NNC)){ + cage_hist_NNC=ggplot(data=subset(data.NNC, !is.na(dist_CAGE_Cat)), aes(x=dist_CAGE_Cat , fill=structural_category)) + + geom_bar(aes(alpha=within_CAGE_peak), color="black", size=0.3, fill=myPalette[4]) + + # scale_y_continuous(expand = c(0,0), limits = c(0,max_height))+ + mytheme + theme(legend.position="bottom") + + # scale_x_discrete(limits = c(-50,50)) + + scale_x_discrete(drop=F, labels=breaks_labels) + + ylab("Number of transcripts")+ + xlab("Distance to CAGE peak, bp")+ + labs( title="Distance to CAGE Peak of Multi-Exonic NNC", + subtitle="Negative values indicate downstream of annotated CAGE peak\n\n", + alpha = "TSS within a CAGE peak") + + theme(axis.text.x = element_text(angle = 60, hjust = 1)) + + cage_hist_NNC_perc=ggplot(data=subset(data.NNC, !is.na(dist_CAGE_Cat)), aes(x=dist_CAGE_Cat , fill=structural_category)) + + geom_bar(aes(y = (..count..)/sum(..count..),alpha=within_CAGE_peak), color="black", size=0.3, fill=myPalette[4]) + + scale_y_continuous(breaks=c(0.0,0.25,0.50,0.75,1), + labels=c("0","25","50","75","100"), + expand = expansion(mult = c(0,0.1))) + + mytheme + theme(legend.position="bottom") + + scale_x_discrete(drop=F, labels=breaks_labels) + + # scale_x_discrete(limits = c(-50,50)) + + ylab("Transcripts, %")+ + xlab("Distance to CAGE peak, bp")+ + labs( title="Distance to CAGE Peak of Multi-Exonic NNC", + subtitle="Negative values indicate downstream of annotated CAGE peak\n\n", + alpha = "TSS within a CAGE peak") + + theme(axis.text.x = element_text(angle = 60, hjust = 1)) + + cage.titles.NNC<-list("Distance to CAGE Peak of Multi-Exonic NNC\n\nCombination of Annotated Junctions", + "Distance to CAGE Peak of Multi-Exonic NNC\n\nCombination of Annotated Splice Sites", + "Distance to CAGE Peak of Multi-Exonic NNC\n\nIntron Retention", + "Distance to CAGE Peak of Multi-Exonic NNC\n\nMono-Exon by Intron Retention", + "Distance to CAGE Peak of Multi-Exonic NNC\n\nAt Least One Annotated Donor/Acceptor") + + cage.NNC.list = list() + cage.NNC.list.a = list() + for(i in 1:length(subcategories.NNC)){ + c<-data.frame(subcategories.NNC[i]) + if (!(dim(c))[1]==0 & !all(is.na(c$dist_to_CAGE_peak))){ + #diff_max=11000 + #diff_breaks <- c(-(diff_max+1), seq(-500, 500, by = 20), diff_max+1); + #c$dist_to_cage_peak[is.na(c$dist_to_cage_peak)] <- -11000 + c$dist_CAGE_Cat = cut(-(c$dist_to_CAGE_peak), breaks = diff_breaks); + cage.NNC.s=ggplot(data=subset(c, !is.na(dist_CAGE_Cat)), aes(x=dist_CAGE_Cat , fill=structural_category)) + + geom_bar(aes(alpha=within_CAGE_peak), color="black", size=0.3, fill=myPalette[4]) + + mytheme + + scale_x_discrete(drop=F, labels=breaks_labels) + + scale_y_continuous( expand = expansion(mult = c(0,0.1)) ) + + theme(legend.position="bottom") + + ylab("Number of transcripts")+ + xlab("Distance to CAGE peak, bp")+ + labs( title=cage.titles.NNC[i], + subtitle="Negative values indicate downstream of annotated CAGE peak\n\n", + alpha = "TSS within a CAGE peak") + + theme(axis.text.x = element_text(angle = 60, hjust = 1)) + cage.NNC.s.perc=ggplot(data=subset(c, !is.na(dist_CAGE_Cat)), aes(x=dist_CAGE_Cat , fill=structural_category)) + + geom_bar(aes(y = (..count..)/sum(..count..), alpha=within_CAGE_peak), color="black", size=0.3, fill=myPalette[4]) + + scale_y_continuous(breaks=c(0.0,0.25,0.50,0.75,1), + labels=c("0","25","50","75","100"), + expand = expansion(mult = c(0,0.1))) + + mytheme + + scale_x_discrete(drop=F, labels=breaks_labels) + + theme(legend.position="bottom") + + ylab("Transcripts, %")+ + xlab("Distance to CAGE peak, bp")+ + labs( title=cage.titles.NNC[i], + subtitle="Negative values indicate downstream of annotated CAGE peak\n\n", + alpha = "TSS within a CAGE peak") + + theme(axis.text.x = element_text(angle = 60, hjust = 1)) + cage.NNC.list[[i]] = cage.NNC.s + cage.NNC.list.a[[i]] = cage.NNC.s.perc + } } } + + } @@ -1886,14 +1898,14 @@ p.polyA_dist_subcat.s2 <- ggplot(data.s2, aes(x=polyA_dist, color=subcategory)) theme(legend.title=element_blank()) } +structural_categories <- c("FSM", "ISM", "NIC", "NNC" ) ### Bad quality control attributes -if (nrow(data.junction) > 0){ +x <- filter(data.class, structural_category %in% structural_categories & exons > 1) +if (nrow(data.junction) > 0 && nrow(x) > 0){ t3.data.sets <- list() t3.list <- list() # (Fran) ToDo: USE COVERAGE DATA LATER # for FSM, ISM, NIC, and NNC, plot the percentage of RTS and non-canonical junction - x <- filter(data.class, structural_category %in% c("FSM", "ISM", "NIC", "NNC" ) & exons > 1) - t1.RTS <- group_by(x, structural_category, RTS_stage) %>% dplyr::summarise(count=dplyr::n(), .groups = 'drop') t2.RTS <- group_by(x, structural_category) %>% dplyr::summarise(count=dplyr::n(), .groups = 'drop') t3.RTS <- merge(t1.RTS, t2.RTS, by="structural_category") @@ -2014,6 +2026,72 @@ if (nrow(data.junction) > 0){ # ggtitle("Incidence of Non-Canonical Junctions\n\n") + # guides(fill = guide_legend(title = "QC Attributes") ) + # We check whether all 4 categories are in the dataframes are filled + # To print the plot with all categories, even if they have 0 as value + # This applies to RTS, SJ, COV, NMD + + column_names <- colnames(t3.RTS) + if(!("FSM" %in% t3.RTS$structural_category)){ + t3.RTS <- rbind(t3.RTS, c("FSM", TRUE, 0,0,0,"RT switching")) + } + if(!("ISM" %in% t3.RTS$structural_category)){ + t3.RTS <- rbind(t3.RTS, c("ISM", TRUE, 0,0,0,"RT switching")) + } + if(!("NIC" %in% t3.RTS$structural_category)){ + t3.RTS <- rbind(t3.RTS, c("NIC", TRUE, 0,0,0,"RT switching")) + } + if(!("NNC" %in% t3.RTS$structural_category)){ + t3.RTS <- rbind(t3.RTS, c("NNC", TRUE,0,0,"RT switching")) + } + colnames(t3.RTS) <- column_names + t3.RTS$perc <- as.numeric(t3.RTS$perc) + column_names <- colnames(t3.SJ) + levels(t3.SJ) <- structural_categories + #t3.SJ$structural_category <- relevel(t3.SJ$structural_category, ) + if(!("FSM" %in% t3.SJ$structural_category)){ + t3.SJ <- rbind(t3.SJ, c("FSM", "Non-canonical",0,0,0,"Non-canonical")) + } + if(!("ISM" %in% t3.SJ$structural_category)){ + t3.SJ <- rbind(t3.SJ, c("ISM", "Non-canonical",0,0,0,"Non-canonical")) + } + if(!("NIC" %in% t3.SJ$structural_category)){ + t3.SJ <- rbind(t3.SJ, c("NIC", "Non-canonical",0,0,0,"Non-canonical")) + } + if(!("NNC" %in% t3.SJ$structural_category)){ + t3.SJ <- rbind(t3.SJ, c("NNC", "Non-canonical",0,0,0,"Non-canonical")) + } + + if(!("FSM" %in% t3.NMD$structural_category)){ + t3.NMD <- rbind(t3.NMD, c("FSM", "Predicted NMD",0,0,0,"NMD")) + } + if(!("ISM" %in% t3.NMD$structural_category)){ + t3.NMD <- rbind(t3.NMD, c("ISM", "Predicted NMD",0,0,0,"NMD")) + } + if(!("NIC" %in% t3.NMD$structural_category)){ + t3.NMD <- rbind(t3.NMD, c("NIC", "Predicted NMD",0,0,0,"NMD")) + } + if(!("NNC" %in% t3.NMD$structural_category)){ + t3.NMD <- rbind(t3.NMD, c("NNC", "Predicted NMD",0,0,0,"NMD")) + } + + t3.NMD$perc <- as.numeric(t3.NMD$perc) + + if(!("FSM" %in% t3.Cov$structural_category)){ + t3.Cov <- rbind(t3.Cov, c("FSM", "Coverage SJ",0,0,0,"Not Coverage SJ")) + } + if(!("ISM" %in% t3.Cov$structural_category)){ + t3.Cov <- rbind(t3.Cov, c("ISM", "Coverage SJ",0,0,0,"Not Coverage SJ")) + } + if(!("NIC" %in% t3.Cov$structural_category)){ + t3.Cov <- rbind(t3.Cov, c("NIC", "Coverage SJ",0,0,0,"Not Coverage SJ")) + } + if(!("NNC" %in% t3.Cov$structural_category)){ + t3.Cov <- rbind(t3.Cov, c("NNC", "Coverage SJ",0,0,0,"Not Coverage SJ")) + } + + t3.Cov$perc <- as.numeric(t3.Cov$perc) + + p28.RTS <- ggplot(t3.RTS, aes(x=structural_category, y=perc)) + geom_col(position='dodge', width = 0.7, size=0.3, fill=myPalette[11], color="black") + geom_text(label=paste(round(t3.RTS$perc, 1),"%",sep=''), position = position_dodge(0.9),vjust = -0.8) + @@ -2024,7 +2102,10 @@ if (nrow(data.junction) > 0){ mytheme + theme(legend.position="bottom", axis.title.x = element_blank()) + ggtitle("RT-switching\n\n") - + + colnames(t3.SJ) <- column_names + t3.SJ$perc <- as.numeric(t3.SJ$perc) + p28.SJ <- ggplot(t3.SJ, aes(x=structural_category, y=perc)) + geom_col(position='dodge', width = 0.7, size=0.3, fill=myPalette[9] ,color="black") + geom_text(label=paste(round(t3.SJ$perc, 1),"%",sep=''), position = position_dodge(0.9),vjust = -0.8) + @@ -2100,6 +2181,7 @@ if (nrow(data.junction) > 0){ t3.a=rbind(t3.annot[,c(1,5,6)], t3.a.SJ[,c(1,5,6)]) }else if (n_t3.SJ>0 & n_t3.RTS>0 & all(is.na(x$min_cov)) & !all(is.na(x$predicted_NMD))){ + p28.NMD <- ggplot(t3.NMD, aes(x=structural_category, y=perc)) + geom_col(position='dodge', width = 0.7, size=0.3, fill=myPalette[5], color="black") + geom_text(label=paste(round(t3.NMD$perc, 1),"%",sep=''), position = position_dodge(0.9),vjust = -0.8) + @@ -2170,37 +2252,37 @@ if (nrow(data.junction) > 0){ t3.a <- rbind(t3.annot[,c(1,5,6)], t3.a.SJ[,c(1,5,6)], t3.a.Cov[,c(1,5,6)]) } - -} - -# Check if t3.SJ is not empty -if (nrow(t3.SJ) > 0) { - t3.aa <- rbind(t3.annot[,c("structural_category", "perc", "Var")], t3.a.SJ[,c(1,5,6)]) - - for(i in 1:length(t3.list)){ - set=data.frame(t3.data.sets[i]) - c=data.frame(t3.list[i]) - if (!all(is.na(set))){ - t.temp=t3.aa - t3.aa = rbind(t.temp, c[,c(1,5,6)]) + # Check if t3.SJ is not empty + if (nrow(t3.SJ) > 0) { + t3.aa <- rbind(t3.annot[,c("structural_category", "perc", "Var")], t3.a.SJ[,c(1,5,6)]) + + for(i in 1:length(t3.list)){ + set=data.frame(t3.data.sets[i]) + c=data.frame(t3.list[i]) + if (!all(is.na(set))){ + t.temp=t3.aa + t3.aa = rbind(t.temp, c[,c(1,5,6)]) + } } + + p28.a <- ggplot(data=t3.aa, aes(x=structural_category, y=perc, fill= Var)) + + geom_bar(position = position_dodge(), stat="identity", width = 0.7, size=0.3, color="black") + + guides(fill=guide_legend(nrow=2,byrow=TRUE)) + + scale_fill_manual(values = c(myPalette)) + + scale_y_continuous(expand = expansion(mult = c(0,0.1))) + + ylab("Transcripts, %") + + xlab("") + + mytheme + + theme(legend.position="bottom", axis.title.x = element_blank()) + + ggtitle( "Good Quality Control Attributes Across Structural Categories\n\n" ) + + theme(axis.text.y = element_text(size=10), + axis.text.x = element_text(size=10))+ + theme(legend.title = element_blank()) } - - p28.a <- ggplot(data=t3.aa, aes(x=structural_category, y=perc, fill= Var)) + - geom_bar(position = position_dodge(), stat="identity", width = 0.7, size=0.3, color="black") + - guides(fill=guide_legend(nrow=2,byrow=TRUE)) + - scale_fill_manual(values = c(myPalette)) + - scale_y_continuous(expand = expansion(mult = c(0,0.1))) + - ylab("Transcripts, %") + - xlab("") + - mytheme + - theme(legend.position="bottom", axis.title.x = element_blank()) + - ggtitle( "Good Quality Control Attributes Across Structural Categories\n\n" ) + - theme(axis.text.y = element_text(size=10), - axis.text.x = element_text(size=10))+ - theme(legend.title = element_blank()) } + + #TSS ratio data.ratio = rbind(data.refmatch[,c(6,48)], data.ISM[,c(6,48)]) if (!all(is.na(data.ratio$ratio_TSS))){ @@ -2321,7 +2403,7 @@ if (nrow(data.ISM) > 0 || nrow(data.FSM) > 0) { # iso_per_knownTr$FSM_cat=NA iso_per_knownTr$FSM_cat=apply(iso_per_knownTr,1, function(X){ - if(as.numeric(X["FSM_per_tr"])==1){ +if(as.numeric(X["FSM_per_tr"])==1){ return("Unique") }else if(as.numeric(X["FSM_per_tr"])>1){ return("Multiple") diff --git a/utilities/report_qc/SQANTI3_report.Rmd b/utilities/report_qc/SQANTI3_report.Rmd index 460b1ae..7d06432 100755 --- a/utilities/report_qc/SQANTI3_report.Rmd +++ b/utilities/report_qc/SQANTI3_report.Rmd @@ -1173,7 +1173,7 @@ ggplotly(p28)%>% cat ('\n') ``` -```{r ,exists("p28.RTS")} +```{r , eval = exists("p28.RTS")} cat("#### RT-switching {.tabset .tabset-fade }") ggplotly(p28.RTS)%>% layout(margin = list(r = 130)) %>% diff --git a/utilities/report_qc/generatePDFreport.R b/utilities/report_qc/generatePDFreport.R index 7c89d60..278e97f 100755 --- a/utilities/report_qc/generatePDFreport.R +++ b/utilities/report_qc/generatePDFreport.R @@ -1,3 +1,9 @@ +print_plot <- function(data){ + if (nrow(data$data)){ + print(data) + } +} + generatePDFreport = function() { pdf(file=pdf.report.file, width = 7.5, height = 6.5) @@ -85,20 +91,20 @@ generatePDFreport = function() print(p1.s.list[i]) } } - print(p4) - print(p4.s1) - print(p4.s2) - print(p4.s3) - print(p5) - print(p5.s1) - print(p5.s2) - print(p5.s3) - print(pSTM) - print(pSTM_perc) - print(pSTM.s1) - print(pSTM_perc.s1) - print(pSTM.s2) - print(pSTM_perc.s2) + print_plot(p4) + print_plot(p4.s1) + print_plot(p4.s2) + print_plot(p4.s3) + print_plot(p5) + print_plot(p5.s1) + print_plot(p5.s2) + print_plot(p5.s3) + print_plot(pSTM) + print_plot(pSTM_perc) + print_plot(pSTM.s1) + print_plot(pSTM_perc.s1) + print_plot(pSTM.s2) + print_plot(pSTM_perc.s2) if (!all(is.na(data.class$iso_exp))){ print(p8) @@ -472,11 +478,11 @@ generatePDFreport = function() s <- textGrob("Intra-Priming Quality Check", gp=gpar(fontface="italic", fontsize=17), vjust = 0) grid.arrange(s) - print(p30.s1) - print(p30.s2) - print(p30.s3) - print(p31) - print(p32) + print_plot(p30.s1) + print_plot(p30.s2) + print_plot(p30.s3) + print_plot(p31) + print_plot(p32) if (saturation.curves=='True'){ if (!all(is.na(data.class$FL))) { @@ -495,35 +501,43 @@ generatePDFreport = function() s <- textGrob("Features of Bad Quality", gp=gpar(fontface="italic", fontsize=17), vjust = 0) grid.arrange(s) - print(p28.RTS) - print(p28.SJ) - if (n_t3.SJ>0 & n_t3.RTS>0 & !all(is.na(data.class$min_cov))) { - print(p28.Cov) + if (exists("p28.RTS")){ + print(p28.RTS) } - if (n_t3.SJ>0 & n_t3.RTS>0 &!all(is.na(data.class$predicted_NMD))) { - print(p28.NMD) - } - if (n_t3.SJ>0 & n_t3.RTS>0) { - print(p28) + if (exists("p28.SJ")){ + print(p28.SJ) } + if(exists("n_t3.SJ") & exists("n_t3.RTS")){ + if (n_t3.SJ>0 & n_t3.RTS>0 & !all(is.na(data.class$min_cov))) { + print(p28.Cov) + } + if (n_t3.SJ>0 & n_t3.RTS>0 &!all(is.na(data.class$predicted_NMD))) { + print(p28.NMD) + } + if (n_t3.SJ>0 & n_t3.RTS>0) { + print(p28) + } + } s <- textGrob("Features of Good Quality", gp=gpar(fontface="italic", fontsize=17), vjust = 0) grid.arrange(s) if (!all(is.na(data.class$dist_to_cage_peak))) { print(p28.a.Cage) } - print(p28.a.annot) + if(exists("p28.a.annot")){ + print(p28.a.annot) + } - if (!all(is.na(data.class$polyA_motif))) { + if (!all(is.na(data.class$polyA_motif)) && exists("p28.a.polyA")) { print(p28.a.polyA) } - print(p28.a.SJ) + if(exists("p28.a.SJ")){print(p28.a.SJ)} - if (!all(is.na(data.class$min_cov))) { + if (!all(is.na(data.class$min_cov)) && exists("p28.a.Cov")) { print(p28.a.Cov) } - if (nrow(t3.SJ) > 0) { + if (exists("t3.SJ") && nrow(t3.SJ) > 0) { print(p28.a) } @@ -535,3 +549,4 @@ generatePDFreport = function() print("SQANTI3 report successfully generated!") } +