forked from lightninglu10/pacman-reinforcementlearning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathghostAgents.py
77 lines (66 loc) · 2.9 KB
/
ghostAgents.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# ghostAgents.py
# --------------
# Licensing Information: Please do not distribute or publish solutions to this
# project. You are free to use and extend these projects for educational
# purposes. The Pacman AI projects were developed at UC Berkeley, primarily by
# John DeNero ([email protected]) and Dan Klein ([email protected]).
# Student side autograding was added by Brad Miller, Nick Hay, and Pieter
# Abbeel in Spring 2013.
# For more info, see http://inst.eecs.berkeley.edu/~cs188/pacman/pacman.html
from game import Agent
from game import Actions
from game import Directions
import random
from util import manhattanDistance
import util
class GhostAgent( Agent ):
def __init__( self, index ):
self.index = index
def getAction( self, state ):
dist = self.getDistribution(state)
if len(dist) == 0:
return Directions.STOP
else:
return util.chooseFromDistribution( dist )
def getDistribution(self, state):
"Returns a Counter encoding a distribution over actions from the provided state."
util.raiseNotDefined()
class RandomGhost( GhostAgent ):
"A ghost that chooses a legal action uniformly at random."
def getDistribution( self, state ):
dist = util.Counter()
for a in state.getLegalActions( self.index ): dist[a] = 1.0
dist.normalize()
return dist
class DirectionalGhost( GhostAgent ):
"A ghost that prefers to rush Pacman, or flee when scared."
def __init__( self, index, prob_attack=0.8, prob_scaredFlee=0.8 ):
self.index = index
self.prob_attack = prob_attack
self.prob_scaredFlee = prob_scaredFlee
def getDistribution( self, state ):
# Read variables from state
ghostState = state.getGhostState( self.index )
legalActions = state.getLegalActions( self.index )
pos = state.getGhostPosition( self.index )
isScared = ghostState.scaredTimer > 0
speed = 1
if isScared: speed = 0.5
actionVectors = [Actions.directionToVector( a, speed ) for a in legalActions]
newPositions = [( pos[0]+a[0], pos[1]+a[1] ) for a in actionVectors]
pacmanPosition = state.getPacmanPosition()
# Select best actions given the state
distancesToPacman = [manhattanDistance( pos, pacmanPosition ) for pos in newPositions]
if isScared:
bestScore = max( distancesToPacman )
bestProb = self.prob_scaredFlee
else:
bestScore = min( distancesToPacman )
bestProb = self.prob_attack
bestActions = [action for action, distance in zip( legalActions, distancesToPacman ) if distance == bestScore]
# Construct distribution
dist = util.Counter()
for a in bestActions: dist[a] = bestProb / len(bestActions)
for a in legalActions: dist[a] += ( 1-bestProb ) / len(legalActions)
dist.normalize()
return dist