-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathbalanced_sampler.py
61 lines (47 loc) · 1.84 KB
/
balanced_sampler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
#! /usr/bin/python
# -*- encoding: utf-8 -*-
import random
import numpy as np
import torch
from torch.utils.data.sampler import Sampler
class BalancedSampler(Sampler):
def __init__(self, data_source, P, K, *args, **kwargs):
super(BalancedSampler, self).__init__(data_source, *args, **kwargs)
self.data_source = data_source
self.P, self.K = P, K
self.person_infos = data_source.person_infos
self.persons = list(data_source.person_infos.keys())
random.shuffle(self.persons)
self.iter_num = len(self.persons) // P
def __iter__(self):
random.shuffle(self.persons)
curr_p = 0
for it in range(self.iter_num):
pids = self.persons[curr_p: curr_p + self.P]
curr_p += self.P
ids = []
for pid in pids:
if len(self.person_infos[pid]) >= self.K:
id_sam = np.random.choice(self.person_infos[pid], self.K, False)
ids.extend(id_sam.tolist())
else:
id_sam = np.random.choice(self.person_infos[pid], self.K, True)
ids.extend(id_sam.tolist())
yield ids
def __len__(self):
return self.iter_num
if __name__ == "__main__":
from torch.utils.data import DataLoader
from market1501 import Market1501
import cv2
ds = Market1501('./dataset/Market-1501-v15.09.15/bounding_box_train')
sampler1 = BalancedSampler(ds, 2, 4)
sampler2 = BalancedSampler(ds, 2, 4)
dl1 = DataLoader(ds, batch_sampler = sampler1, num_workers = 1)
dl2 = DataLoader(ds, batch_sampler = sampler2, num_workers = 1)
for jj in range(2):
for i, ((imgs1, lbs1, ids1), (imgs2, lbs2, ids2)) in enumerate(zip(dl1, dl2)):
print(i)
print(lbs1)
print(lbs2)
if i == 4: break