Skip to content
/ pycles Public

A python based infrastructure for cloud large eddy simulation.

License

Notifications You must be signed in to change notification settings

CliMA/pycles

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Python Cloud Large Eddy Simulation, or PyCLES (pronounced pickles), is a massively parallel anelastic atmospheric large eddy simulation infrastructure designed to simulate boundary layer clouds and deep convection. PyCLES is written in Python, Cython, and C. It was primarily developed by Kyle Pressel and Colleen Kaul as part of the Climate Dynamics Group at both the California Institute of Technology and ETH Zurich.

The model formulation is describe in detail in:

Pressel, K. G., C. M. Kaul, T. Schneider, Z. Tan, and S. Mishra, 2015: Large-eddy simulation in an anelastic framework with closed water and entropy balances. Journal of Advances in Modeling Earth Systems, 7, 1425–1456, doi:10.1002/2015MS000496.

PyCLES Related Publications:

Zhang, X., T. Schneider, and C. M. Kaul, 2018: Arctic mixed-phase clouds in large-eddy simulations and a mixed-layer model. Journal of Advances in Modeling Earth Systems, submitted. PDF

Tan, Z., C. M. Kaul, K. G. Pressel, Y. Cohen, T. Schneider, and J. Teixeira, 2018: An extended eddy-diffusivity mass-flux scheme for unified representation of subgrid-scale turbulence and convection. Journal of Advances in Modeling Earth Systems, In Press. Early Release

Pressel, K. G., S. Mishra, T. Schneider, C. M. Kaul, Z. Tan, 2017: Numerics and subgrid-scale modeling in large eddy simulations of stratocumulus clouds. Journal of Advances in Modeling Earth Systems, 9, 1342-1365, doi:10.1002/2016MS000778.

Tan, Z., T. Schneider, J. Teixeira, and K. G. Pressel, 2017: Large-eddy simulation of subtropical cloud-topped boundary layers: 2. Cloud response to climate change. Journal of Advances in Modeling Earth Systems, 9, 19-38, doi:10.1002/2016MS000804.

Schneider, T., J. Teixeira, C. S. Bretherton, F. Brient, K. G. Pressel, C. Schär, and A. P. Siebesma, 2017: Climate goals and computing the future of clouds. Nature Climate Change, 7, 3-5, doi:10.1038/nclimate3190.

Tan, Z., T. Schneider, J. Teixeira, and K. G. Pressel, 2016: Large-eddy simulation of subtropical cloud-topped boundary layers: 1. A forcing framework with closed surface energy balance. Journal of Advances in Modeling Earth Systems, 8, 1565-1585, doi:10.1002/2016MS000655.

Pressel, K. G., C. M. Kaul, T. Schneider, Z. Tan, and S. Mishra, 2015: Large-eddy simulation in an anelastic framework with closed water and entropy balances. Journal of Advances in Modeling Earth Systems, 7, 1425–1456, doi:10.1002/2015MS000496.

Ait-Chaalal, F., T. Schneider, B. Meyer, and B. Marston, 2016: Cumulant expansions for atmospheric flows. New Journal of Physics, 18, 025019, doi:10.1088/1367-2630/18/2/025019.

About

A python based infrastructure for cloud large eddy simulation.

Resources

License

Stars

Watchers

Forks

Packages

No packages published