diff --git a/Project.toml b/Project.toml index 8b22fb01..c1031a7d 100644 --- a/Project.toml +++ b/Project.toml @@ -1,7 +1,7 @@ name = "ClimaTimeSteppers" uuid = "595c0a79-7f3d-439a-bc5a-b232dc3bde79" authors = ["Climate Modeling Alliance"] -version = "0.7.33" +version = "0.7.34" [deps] ClimaComms = "3a4d1b5c-c61d-41fd-a00a-5873ba7a1b0d" diff --git a/src/solvers/rosenbrock.jl b/src/solvers/rosenbrock.jl index bfabb95e..bb32f556 100644 --- a/src/solvers/rosenbrock.jl +++ b/src/solvers/rosenbrock.jl @@ -15,17 +15,17 @@ Contains everything that defines a Rosenbrock-type method. Refer to the documentation for the precise meaning of the symbols below. """ -struct RosenbrockTableau{N} +struct RosenbrockTableau{N, SM <: SMatrix{N, N}, SM1 <: SMatrix{N, 1}} """A = α Γ⁻¹""" - A::SMatrix{N, N} + A::SM """Tableau used for the time-dependent part""" - α::SMatrix{N, N} + α::SM """Stepping matrix. C = 1/diag(Γ) - Γ⁻¹""" - C::SMatrix{N, N} + C::SM """Substage contribution matrix""" - Γ::SMatrix{N, N} + Γ::SM """m = b Γ⁻¹, used to compute the increments k""" - m::SMatrix{N, 1} + m::SM1 end function RosenbrockTableau(α::SMatrix{N, N}, Γ::SMatrix{N, N}, b::SMatrix{1, N}) where {N} @@ -35,7 +35,10 @@ function RosenbrockTableau(α::SMatrix{N, N}, Γ::SMatrix{N, N}, b::SMatrix{1, N # C is diag(γ₁₁⁻¹, γ₂₂⁻¹, ...) - Γ⁻¹ C = diag_invΓ .- inv(Γ) m = b / Γ - return RosenbrockTableau{N}(A, α, C, Γ, m) + m′ = convert(SMatrix{N, 1}, m) # Sometimes m is a SMatrix{1, N} matrix. + SM = typeof(A) + SM1 = typeof(m′) + return RosenbrockTableau{N, SM, SM1}(A, α, C, Γ, m′) end """ @@ -120,10 +123,11 @@ function step_u!(int, cache::RosenbrockCache{Nstages}) where {Nstages} tgrad! = isnothing(T_imp!) ? nothing : T_imp!.tgrad (; post_explicit!, post_implicit!, dss!) = int.sol.prob.f + tT = typeof(t) # TODO: This is only valid when Γ[i, i] is constant, otherwise we have to # move this in the for loop - dtγ = dt * Γ[1, 1] + @inbounds dtγ = dt * Γ[1, 1] if !isnothing(T_imp!) Wfact! = int.sol.prob.f.T_imp!.Wfact @@ -134,12 +138,12 @@ function step_u!(int, cache::RosenbrockCache{Nstages}) where {Nstages} tgrad!(∂Y∂t, u, p, t) end - for i in 1:Nstages + @inbounds for i in 1:Nstages # Reset tendency fill!(fU, 0) - αi = sum(α[i, 1:(i - 1)]) - γi = sum(Γ[i, 1:i]) + αi = sum(α[i, 1:(i - 1)]; init = zero(tT))::tT + γi = sum(Γ[i, 1:i]; init = zero(tT))::tT U .= u for j in 1:(i - 1) @@ -196,7 +200,7 @@ function step_u!(int, cache::RosenbrockCache{Nstages}) where {Nstages} end end - for i in 1:Nstages + @inbounds for i in 1:Nstages u .+= m[i] .* k[i] end