-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathtrain.py
executable file
·280 lines (238 loc) · 11.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import argparse
import time
import csv
import os
import torch
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torchvision.transforms as transforms
import co_transforms
import models
import datasets
from loss import depth_metric_reconstruction_loss as metric_loss
from terminal_logger import TermLogger
from tensorboardX import SummaryWriter
import util
from util import AverageMeter
parser = argparse.ArgumentParser(description='PyTorch DepthNet Training on Still Box dataset')
util.set_arguments(parser)
best_error = -1
n_iter = 0
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
def main():
global args, best_error, viz
args = util.set_params(parser)
train_writer = SummaryWriter(args.save_path/'train')
val_writer = SummaryWriter(args.save_path/'val')
output_writers = []
if args.log_output:
for i in range(3):
output_writers.append(SummaryWriter(args.save_path/'val'/str(i)))
torch.manual_seed(args.seed)
# Data loading code
mean = [0.5, 0.5, 0.5]
std = [0.2, 0.2, 0.2]
normalize = transforms.Normalize(mean=mean,
std=std)
input_transform = transforms.Compose([
co_transforms.ArrayToTensor(),
transforms.Normalize(mean=[0, 0, 0], std=[255, 255, 255]),
normalize
])
target_transform = transforms.Compose([
co_transforms.Clip(0, 100),
co_transforms.ArrayToTensor()
])
co_transform = co_transforms.Compose([
co_transforms.RandomVerticalFlip(),
co_transforms.RandomHorizontalFlip()
])
print("=> fetching scenes in '{}'".format(args.data))
train_set, val_set = datasets.still_box(
args.data,
transform=input_transform,
target_transform=target_transform,
co_transform=co_transform,
split=args.split,
seed=args.seed
)
print('{} samples found, {} train scenes and {} validation samples '.format(len(val_set)+len(train_set),
len(train_set),
len(val_set)))
train_loader = torch.utils.data.DataLoader(
train_set, batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True)
val_loader = torch.utils.data.DataLoader(
val_set, batch_size=args.batch_size,
shuffle=False,
num_workers=args.workers, pin_memory=True)
if args.epoch_size == 0:
args.epoch_size = len(train_loader)
# create model
if args.pretrained:
data = torch.load(args.pretrained)
assert(not data['with_confidence'])
print("=> using pre-trained model '{}'".format(data['arch']))
model = models.DepthNet(batch_norm=data['bn'], clamp=args.clamp, depth_activation=args.activation_function)
model.load_state_dict(data['state_dict'])
else:
print("=> creating model '{}'".format(args.arch))
model = models.DepthNet(batch_norm=args.bn, clamp=args.clamp, depth_activation=args.activation_function)
model = model.to(device)
model = torch.nn.DataParallel(model)
cudnn.benchmark = True
assert(args.solver in ['adam', 'sgd'])
print('=> setting {} solver'.format(args.solver))
if args.solver == 'adam':
optimizer = torch.optim.Adam(model.parameters(), args.lr,
betas=(args.momentum, args.beta),
weight_decay=args.weight_decay)
elif args.solver == 'sgd':
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay,
dampening=args.momentum)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer,
milestones=[19,30,44,53],
gamma=0.3)
with open(os.path.join(args.save_path, args.log_summary), 'w') as csvfile:
writer = csv.writer(csvfile, delimiter='\t')
writer.writerow(['train_loss', 'train_depth_error', 'normalized_train_depth_error', 'depth_error', 'normalized_depth_error'])
with open(os.path.join(args.save_path, args.log_full), 'w') as csvfile:
writer = csv.writer(csvfile, delimiter='\t')
writer.writerow(['train_loss', 'train_depth_error'])
term_logger = TermLogger(n_epochs=args.epochs, train_size=min(len(train_loader), args.epoch_size), test_size=len(val_loader))
term_logger.epoch_bar.start()
if args.evaluate:
depth_error, normalized = validate(val_loader, model, 0, term_logger, output_writers)
term_logger.test_writer.write(' * Depth error : {:.3f}, normalized : {:.3f}'.format(depth_error, normalized))
return
for epoch in range(args.epochs):
term_logger.epoch_bar.update(epoch)
scheduler.step()
# train for one epoch
term_logger.reset_train_bar()
term_logger.train_bar.start()
train_loss, train_error, train_normalized_error = train(train_loader, model, optimizer, args.epoch_size, term_logger, train_writer)
term_logger.train_writer.write(' * Avg Loss : {:.3f}, Avg Depth error : {:.3f}, normalized : {:.3f}'
.format(train_loss, train_error, train_normalized_error))
train_writer.add_scalar('metric_error', train_error, epoch)
train_writer.add_scalar('metric_normalized_error', train_normalized_error, epoch)
# evaluate on validation set
term_logger.reset_test_bar()
term_logger.test_bar.start()
depth_error, normalized = validate(val_loader, model, epoch, term_logger, output_writers)
term_logger.test_writer.write(' * Depth error : {:.3f}, normalized : {:.3f}'.format(depth_error, normalized))
val_writer.add_scalar('metric_error', depth_error, epoch)
val_writer.add_scalar('metric_normalized_error', normalized, epoch)
if best_error < 0:
best_error = depth_error
# remember lowest error and save checkpoint
is_best = depth_error < best_error
best_error = min(depth_error, best_error)
util.save_checkpoint(
args.save_path, {
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'best_error': best_error,
'bn': args.bn,
'with_confidence': False,
'activation_function': args.activation_function,
'clamp': args.clamp,
'mean': mean,
'std': std
},
is_best)
with open(os.path.join(args.save_path, args.log_summary), 'a') as csvfile:
writer = csv.writer(csvfile, delimiter='\t')
writer.writerow([train_loss, train_error, depth_error])
term_logger.epoch_bar.finish()
def train(train_loader, model, optimizer, epoch_size, term_logger, train_writer):
global n_iter, args
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
depth2_metric_errors = AverageMeter()
depth2_normalized_errors = AverageMeter()
# switch to train mode
model.train()
end = time.time()
for i, (input, target, _) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
target = target.to(device)
input = torch.cat(input,1).to(device)
# compute output
output = model(input)
loss = metric_loss(output, target, weights=(0.32, 0.08, 0.02, 0.01, 0.005), loss=args.loss)
depth2_norm_error = metric_loss(output[0], target, normalize=True)
depth2_metric_error = metric_loss(output[0], target, normalize=False)
# record loss and EPE
losses.update(loss.item(), target.size(0))
train_writer.add_scalar('train_loss', loss.item(), n_iter)
depth2_metric_errors.update(depth2_metric_error.item(), target.size(0))
depth2_normalized_errors.update(depth2_norm_error.item(), target.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
with open(os.path.join(args.save_path, args.log_full), 'a') as csvfile:
writer = csv.writer(csvfile, delimiter='\t')
writer.writerow([loss.item(), depth2_metric_error.item()])
term_logger.train_bar.update(i+1)
if i % args.print_freq == 0:
term_logger.train_writer.write(
'Train: Time {batch_time.val:.3f} ({batch_time.avg:.3f}) '
'Data {data_time.val:.3f} ({data_time.avg:.3f}) '
'Loss {loss.val:.4f} ({loss.avg:.4f}) '
'Depth error {depth2_error.val:.3f} ({depth2_error.avg:.3f})\r'
.format(batch_time=batch_time, data_time=data_time,
loss=losses, depth2_error=depth2_metric_errors))
if i >= epoch_size - 1:
break
n_iter += 1
return losses.avg, depth2_metric_errors.avg, depth2_normalized_errors.avg
@torch.no_grad()
def validate(val_loader, model, epoch, logger, output_writers=[]):
batch_time = AverageMeter()
depth2_metric_errors = AverageMeter()
depth2_norm_errors = AverageMeter()
log_outputs = len(output_writers) > 0
# switch to evaluate mode
model.eval()
end = time.time()
for i, (input, target, _) in enumerate(val_loader):
target = target.to(device)
input = torch.cat(input, 1).to(device)
# compute output
output = model(input)
if log_outputs and i < len(output_writers): # log first output of 3 first batches
if epoch == 0:
output_writers[i].add_image('GroundTruth', util.tensor2array(target[0], max_value=100), 0)
output_writers[i].add_image('Inputs', util.tensor2array(input[0,:3]), 0)
output_writers[i].add_image('Inputs', util.tensor2array(input[0,3:]), 1)
output_writers[i].add_image('DepthNet Outputs', util.tensor2array(output[0], max_value=100), epoch)
depth2_norm_error = metric_loss(output, target, normalize=True)
depth2_metric_error = metric_loss(output, target, normalize=False)
# record depth error
depth2_norm_errors.update(depth2_norm_error.item(), target.size(0))
depth2_metric_errors.update(depth2_metric_error.item(), target.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
logger.test_bar.update(i+1)
if i % args.print_freq == 0:
logger.test_writer.write(
'Validation: '
'Time {batch_time.val:.3f} ({batch_time.avg:.3f}) '
'Depth error {depth2_error.val:.3f} ({depth2_error.avg:.3f})'
.format(batch_time=batch_time,
depth2_error=depth2_metric_errors))
return depth2_metric_errors.avg, depth2_norm_errors.avg
if __name__ == '__main__':
main()