forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbert_models_test.py
114 lines (98 loc) · 4.31 KB
/
bert_models_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from official.nlp.bert import bert_models
from official.nlp.bert import configs as bert_configs
from official.nlp.modeling import networks
class BertModelsTest(tf.test.TestCase):
def setUp(self):
super(BertModelsTest, self).setUp()
self._bert_test_config = bert_configs.BertConfig(
attention_probs_dropout_prob=0.0,
hidden_act='gelu',
hidden_dropout_prob=0.0,
hidden_size=16,
initializer_range=0.02,
intermediate_size=32,
max_position_embeddings=128,
num_attention_heads=2,
num_hidden_layers=2,
type_vocab_size=2,
vocab_size=30522)
def test_pretrain_model(self):
model, encoder = bert_models.pretrain_model(
self._bert_test_config,
seq_length=5,
max_predictions_per_seq=2,
initializer=None,
use_next_sentence_label=True)
self.assertIsInstance(model, tf.keras.Model)
self.assertIsInstance(encoder, networks.TransformerEncoder)
# model has one scalar output: loss value.
self.assertEqual(model.output.shape.as_list(), [None,])
# Expect two output from encoder: sequence and classification output.
self.assertIsInstance(encoder.output, list)
self.assertLen(encoder.output, 2)
# shape should be [batch size, seq_length, hidden_size]
self.assertEqual(encoder.output[0].shape.as_list(), [None, 5, 16])
# shape should be [batch size, hidden_size]
self.assertEqual(encoder.output[1].shape.as_list(), [None, 16])
def test_squad_model(self):
model, core_model = bert_models.squad_model(
self._bert_test_config,
max_seq_length=5,
initializer=None,
hub_module_url=None,
hub_module_trainable=None)
self.assertIsInstance(model, tf.keras.Model)
self.assertIsInstance(core_model, tf.keras.Model)
# Expect two output from model: start positions and end positions
self.assertIsInstance(model.output, list)
self.assertLen(model.output, 2)
# shape should be [batch size, seq_length]
self.assertEqual(model.output[0].shape.as_list(), [None, 5])
# shape should be [batch size, seq_length]
self.assertEqual(model.output[1].shape.as_list(), [None, 5])
# Expect two output from core_model: sequence and classification output.
self.assertIsInstance(core_model.output, list)
self.assertLen(core_model.output, 2)
# shape should be [batch size, seq_length, hidden_size]
self.assertEqual(core_model.output[0].shape.as_list(), [None, 5, 16])
# shape should be [batch size, hidden_size]
self.assertEqual(core_model.output[1].shape.as_list(), [None, 16])
def test_classifier_model(self):
model, core_model = bert_models.classifier_model(
self._bert_test_config,
num_labels=3,
max_seq_length=5,
final_layer_initializer=None,
hub_module_url=None,
hub_module_trainable=None)
self.assertIsInstance(model, tf.keras.Model)
self.assertIsInstance(core_model, tf.keras.Model)
# model has one classification output with num_labels=3.
self.assertEqual(model.output.shape.as_list(), [None, 3])
# Expect two output from core_model: sequence and classification output.
self.assertIsInstance(core_model.output, list)
self.assertLen(core_model.output, 2)
# shape should be [batch size, 1, hidden_size]
self.assertEqual(core_model.output[0].shape.as_list(), [None, 1, 16])
# shape should be [batch size, hidden_size]
self.assertEqual(core_model.output[1].shape.as_list(), [None, 16])
if __name__ == '__main__':
tf.test.main()