-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
46 lines (29 loc) · 951 Bytes
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import os
import pickle
import mlflow
from flask import Flask, request, jsonify
RUN_ID = os.getenv('RUN_ID')
logged_model = f's3://mlflow-models-alexey/1/{RUN_ID}/artifacts/model'
# logged_model = f'runs:/{RUN_ID}/model'
model = mlflow.pyfunc.load_model(logged_model)
def prepare_features(ride):
features = {}
features['PU_DO'] = '%s_%s' % (ride['PULocationID'], ride['DOLocationID'])
features['trip_distance'] = ride['trip_distance']
return features
def predict(features):
preds = model.predict(features)
return float(preds[0])
app = Flask('duration-prediction')
@app.route('/predict', methods=['POST'])
def predict_endpoint():
ride = request.get_json()
features = prepare_features(ride)
pred = predict(features)
result = {
'duration': pred,
'model_version': RUN_ID
}
return jsonify(result)
if __name__ == "__main__":
app.run(debug=True, host='0.0.0.0', port=9696)