forked from Yuanhy1997/SeqDiffuSeq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
inference_main.py
209 lines (171 loc) · 8.72 KB
/
inference_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
"""
Generate a large batch of image samples from a model and save them as a large
numpy array. This can be used to produce samples for FID evaluation.
"""
import os, json
from typing import List
import numpy as np
import torch as th
import torch.distributed as dist
from transformers import set_seed
from src.utils import dist_util, logger
from args_utils import *
from model_utils import create_model_and_diffusion
from args_utils import create_argparser, args_to_dict, model_and_diffusion_defaults
from tokenizer_utils import create_tokenizer
import dataloader_utils
from mpi4py import MPI
def main():
args = create_argparser().parse_args()
set_seed(args.seed)
th.manual_seed(args.seed)
print(args.seed)
dist_util.setup_dist()
logger.configure()
# load configurations.
args.checkpoint_path = os.path.split(args.model_name_or_path)[0]
config_path = os.path.join(args.checkpoint_path, "training_args.json")
training_args = read_training_args(config_path)
training_args["batch_size"] = args.batch_size
training_args["diffusion_steps"] = args.diffusion_steps
training_args['model_name_or_path'] = args.model_name_or_path
training_args["clamp"] = args.clamp
training_args['out_dir'] = args.out_dir
training_args['num_samples'] = args.num_samples
training_args['val_txt_path'] = args.val_txt_path
training_args['top_p'] = args.top_p
training_args['sequence_len_src'] = args.sequence_len_src
training_args['sequence_len'] = args.sequence_len
training_args['generate_by_q'] = args.generate_by_q
training_args['generate_by_mix'] = args.generate_by_mix
training_args['time_schedule_path'] = args.time_schedule_path
training_args['seed'] = args.seed
args.__dict__.update(training_args)
args.sigma_small = True
logger.info(f"Init pretrained = {args.init_pretrained}")
logger.info(f"Freeze embeddings = {args.freeze_embeddings}")
logger.info(f"Use pretrained embeddings = {args.use_pretrained_embeddings}")
logger.info(f"Use pretrained embeddings = {args.use_pretrained_tokenizer}")
tokenizer = create_tokenizer(return_pretokenized=args.use_pretrained_tokenizer,
path=f"data/{args.dataset}/",
tokenizer_type='byte-level',
tokenizer_ckpt=args.pretrained_tokenizer)
model, diffusion = create_model_and_diffusion(
pad_tok_id=tokenizer.pad_token_id if hasattr(tokenizer, 'pad_token_id') else tokenizer.get_vocab()['<pad>'],
resume_checkpoint=args.resume_checkpoint, **args_to_dict(args, model_and_diffusion_defaults().keys())
)
diffusion._load_time_schedule(args.time_schedule_path)
model.load_state_dict(dist_util.load_state_dict(args.model_name_or_path, map_location="cpu"))
model.eval()
print('data path', args.val_txt_path)
val_dataloader = dataloader_utils.get_dataloader(
tokenizer=tokenizer,
args=args,
data_path=args.val_txt_path,
batch_size=args.batch_size,
max_seq_len=args.sequence_len,
max_seq_len_src=args.sequence_len_src,
)
if args.num_samples <= 0:
args.num_samples = len(dataloader_utils.TextDataset_translation(tokenizer=tokenizer, data_path=args.val_txt_path, source=args.src, target=args.tgt,
shard=MPI.COMM_WORLD.Get_rank(),
num_shards=MPI.COMM_WORLD.Get_size()))
logger.log(f"sample count is {args.num_samples}")
pytorch_total_params = sum(p.numel() for p in model.parameters())
logger.log(f"the parameter count is {pytorch_total_params}")
diffusion.rescale_timesteps = True
model.to(dist_util.dev())
model.eval() # DEBUG
logger.log("sampling...")
logger.log(f"Clamping is set to {args.clamp}")
all_samples = []
ground_true_samples = []
while len(all_samples) * args.batch_size < args.num_samples:
batch, _ = next(val_dataloader)
model_kwargs = {key:item.to(dist_util.dev()) for key, item in batch.items() if 'decoder' not in key}
sample_shape = (args.batch_size, args.sequence_len, model.input_transformers.shared.weight.shape[1])
print('sample_shape', sample_shape)
sample = diffusion.p_sample_loop(
model,
sample_shape,
clip_denoised=args.clip_denoised,
denoised_fn=None,
model_kwargs=model_kwargs,
top_p=args.top_p,
progress=True,
tokenizer=tokenizer,
log_verbose=True,
decoder_inputs=batch['decoder_input_ids'],
generate_by_q=args.generate_by_q,
generate_by_mix=args.generate_by_mix,
generate_by_mix_prob=args.generate_by_mix_prob,
generate_by_mix_part=args.generate_by_mix_part,
)
logits = model.get_logits(sample) # bsz, seqlen, vocab
cands = th.topk(logits, k=1, dim=-1).indices.squeeze()
if args.decoder_attention_mask:
cands[model_kwargs['decoder_attention_mask']==0] = 1
gathered_samples = [th.zeros_like(cands) for _ in range(dist.get_world_size())]
dist.all_gather(gathered_samples, cands) # gather not supported with NCCL
all_samples.extend([sample.cpu().numpy() for sample in gathered_samples])
print('number of sample', len(all_samples), all_samples[0].shape)
batch['decoder_input_ids'] = batch['decoder_input_ids'].to(dist_util.dev())
gathered_ground_true_sample = [th.zeros_like(batch['decoder_input_ids']) for _ in range(dist.get_world_size())]
dist.all_gather(gathered_ground_true_sample, batch['decoder_input_ids'])
ground_true_samples.extend([sample.cpu().numpy() for sample in gathered_ground_true_sample])
logger.log(f"created {len(all_samples) * args.batch_size} samples")
cands = np.concatenate(all_samples, axis=0)
cands = cands[: args.num_samples]
decoded_sentences = []
for seq in cands:
seq = seq[seq>2]
decoded_sentence = tokenizer.decode(seq.tolist(), skip_special_tokens=True)
decoded_sentences.append(decoded_sentence)
ground_true_sentences = []
ground_true_samples = np.concatenate(ground_true_samples, axis=0)[: args.num_samples]
for seq in ground_true_samples:
seq = seq[seq>2]
ground_true_sentence = tokenizer.decode(seq.squeeze().tolist(), skip_special_tokens=True)
ground_true_sentences.append(ground_true_sentence)
dist.barrier()
logger.log("sampling complete")
write_outputs(args=args,
sentences=decoded_sentences,
gt_sentences = ground_true_sentences,
raw_sentences=cands,
raw_gt_sentences=ground_true_samples,)
def load_embeddings(checkpoint_path, tokenizer, emb_dim):
embeddings = th.nn.Embedding(tokenizer.vocab_size, emb_dim)
embeddings.load_state_dict(th.load(f'{checkpoint_path}/random_emb.torch'))
return embeddings
def read_training_args(config_path):
with open(config_path, "r") as f:
return json.load(f)
def write_outputs(args: dict, sentences: List[str], gt_sentences: List[str], raw_sentences, raw_gt_sentences) -> None:
model_dir = os.path.split(args.model_name_or_path)[0]
model_base_name = os.path.split(args.model_name_or_path)[1]
if args.generate_by_q:
comments = f'predict_by_qsample_{args.seed}'
elif args.generate_by_mix:
comments = f'predict_by_mixsample_{args.generate_by_mix_prob}_{args.generate_by_mix_part}_{args.seed}'
else:
comments = f'normal_{args.seed}'
num_samples = len(sentences)
output_file_basepath = os.path.join(
model_dir,
f"{model_base_name}.samples_{num_samples}.steps-{args.diffusion_steps}.clamp-{args.clamp}-{comments}",
) + ".txt"
with open(output_file_basepath, "w") as text_fout:
for generated_sentence, ground_true_sentence in zip(sentences, gt_sentences):
text_fout.write(json.dumps([generated_sentence, ground_true_sentence]) + "\n")
print(f"written the decoded output to {output_file_basepath}")
output_file_basepath = os.path.join(
model_dir,
f"{model_base_name}.samples_{num_samples}.steps-{args.diffusion_steps}.clamp-{args.clamp}.raw-output-ids-{comments}",
) + ".txt"
with open(output_file_basepath, "w") as text_fout:
for generated_sentence, ground_true_sentence in zip(raw_sentences, raw_gt_sentences):
text_fout.write(json.dumps([generated_sentence.tolist(), ground_true_sentence.tolist()]) + "\n")
print(f"written the decoded output to {output_file_basepath}")
if __name__ == "__main__":
main()