-
Notifications
You must be signed in to change notification settings - Fork 86
/
Copy pathevaluate.py
177 lines (151 loc) · 7.58 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import os
from scipy.ndimage import gaussian_filter1d
import torch
import argparse
import numpy as np
from dataset import get_meanpose, get_dataloader
from model import get_autoencoder
from functional.visualization import motion2video, hex2rgb
from functional.motion import preprocess_motion2d, postprocess_motion2d, openpose2motion
from functional.utils import ensure_dir, pad_to_height
from common import config
VIEW_ANGLES = [(0, 0, -np.pi / 2),
(0, 0, -np.pi / 3),
(0, 0, -np.pi / 6),
(0, 0, 0),
(0, 0, np.pi / 6),
(0, 0, np.pi / 3),
(0, 0, np.pi / 2)]
def handle2x(config, args):
w1 = h1 = w2 = h2 = 512
# load trained model
net = get_autoencoder(config)
net.load_state_dict(torch.load(args.model_path))
net.to(config.device)
net.eval()
# mean/std pose
mean_pose, std_pose = get_meanpose(config)
# get input
dataloder = get_dataloader('test', config)
v1 = VIEW_ANGLES[args.view1] if args.view1 is not None else None
v2 = VIEW_ANGLES[args.view2] if args.view2 is not None else None
input1 = dataloder.dataset.preprocessing(args.path1, v1).unsqueeze(0)
input2 = dataloder.dataset.preprocessing(args.path2, v2).unsqueeze(0)
input1 = input1.to(config.device)
input2 = input2.to(config.device)
# transfer by network
out12 = net.transfer(input1, input2)
out21 = net.transfer(input2, input1)
# postprocessing the outputs
input1 = postprocess_motion2d(input1, mean_pose, std_pose, w1 // 2, h1 // 2)
input2 = postprocess_motion2d(input2, mean_pose, std_pose, w2 // 2, h2 // 2)
out12 = postprocess_motion2d(out12, mean_pose, std_pose, w2 // 2, h2 // 2)
out21 = postprocess_motion2d(out21, mean_pose, std_pose, w1 // 2, h1 // 2)
if not args.disable_smooth:
out12 = gaussian_filter1d(out12, sigma=2, axis=-1)
out21 = gaussian_filter1d(out21, sigma=2, axis=-1)
if args.out_dir is not None:
save_dir = args.out_dir
ensure_dir(save_dir)
color1 = hex2rgb(args.color1)
color2 = hex2rgb(args.color2)
np.savez(os.path.join(save_dir, 'results.npz'),
input1=input1,
input2=input2,
out12=out12,
out21=out21)
if args.render_video:
print("Generating videos...")
motion2video(input1, h1, w1, os.path.join(save_dir, 'input1.mp4'), color1, args.transparency,
fps=args.fps, save_frame=args.save_frame)
motion2video(input2, h2, w2, os.path.join(save_dir,'input2.mp4'), color2, args.transparency,
fps=args.fps, save_frame=args.save_frame)
motion2video(out12, h2, w2, os.path.join(save_dir,'out12.mp4'), color2, args.transparency,
fps=args.fps, save_frame=args.save_frame)
motion2video(out21, h1, w1, os.path.join(save_dir,'out21.mp4'), color1, args.transparency,
fps=args.fps, save_frame=args.save_frame)
print("Done.")
def handle3x(config, args):
# resize input
h1, w1, scale1 = pad_to_height(config.img_size[0], args.img1_height, args.img1_width)
h2, w2, scale2 = pad_to_height(config.img_size[0], args.img2_height, args.img2_width)
h3, w3, scale3 = pad_to_height(config.img_size[0], args.img2_height, args.img3_width)
# load trained model
net = get_autoencoder(config)
net.load_state_dict(torch.load(args.model_path))
net.to(config.device)
net.eval()
# mean/std pose
mean_pose, std_pose = get_meanpose(config)
# get input
input1 = openpose2motion(args.vid1_json_dir, scale=scale1, max_frame=args.max_length)
input2 = openpose2motion(args.vid2_json_dir, scale=scale2, max_frame=args.max_length)
input3 = openpose2motion(args.vid3_json_dir, scale=scale3, max_frame=args.max_length)
input1 = preprocess_motion2d(input1, mean_pose, std_pose)
input2 = preprocess_motion2d(input2, mean_pose, std_pose)
input3 = preprocess_motion2d(input3, mean_pose, std_pose)
input1 = input1.to(config.device)
input2 = input2.to(config.device)
input3 = input3.to(config.device)
# transfer by network
out = net.transfer_three(input1, input2, input3)
# postprocessing the outputs
input1 = postprocess_motion2d(input1, mean_pose, std_pose, w1 // 2, h1 // 2)
input2 = postprocess_motion2d(input2, mean_pose, std_pose, w2 // 2, h2 // 2)
input3 = postprocess_motion2d(input3, mean_pose, std_pose, w2 // 2, h2 // 2)
out = postprocess_motion2d(out, mean_pose, std_pose, w2 // 2, h2 // 2)
if not args.disable_smooth:
out = gaussian_filter1d(out, sigma=2, axis=-1)
if args.out_dir is not None:
save_dir = args.out_dir
ensure_dir(save_dir)
color1 = hex2rgb(args.color1)
color2 = hex2rgb(args.color2)
color3 = hex2rgb(args.color3)
np.savez(os.path.join(save_dir, 'results.npz'),
input1=input1,
input2=input2,
input3=input3,
out=out)
if args.render_video:
print("Generating videos...")
motion2video(input1, h1, w1, os.path.join(save_dir,'input1.mp4'), color1, args.transparency,
fps=args.fps, save_frame=args.save_frame)
motion2video(input2, h2, w2, os.path.join(save_dir,'input2.mp4'), color2, args.transparency,
fps=args.fps, save_frame=args.save_frame)
motion2video(input3, h3, w3, os.path.join(save_dir,'input3.mp4'), color3, args.transparency,
fps=args.fps, save_frame=args.save_frame)
motion2video(out, h2, w2, os.path.join(save_dir,'out.mp4'), color2, args.transparency,
fps=args.fps, save_frame=args.save_frame)
print("Done.")
def main():
parser = argparse.ArgumentParser()
parser.add_argument('-n', '--name', type=str, choices=['skeleton', 'view', 'full'], required=True,
help='which structure to use.')
parser.add_argument('--model_path', type=str, required=True, help="filepath for trained model weights")
parser.add_argument('--path1', type=str)
parser.add_argument('--path2', type=str)
parser.add_argument('--view1', type=int)
parser.add_argument('--view2', type=int)
parser.add_argument('-o', '--out_dir', type=str, default='./outputs', help="output saving directory")
parser.add_argument('--render_video', type=bool, default=True, help="whether to save rendered video")
parser.add_argument('--fps', type=float, default=25, help="fps of output video")
parser.add_argument('--save_frame', action='store_true', help="to save rendered video frames")
parser.add_argument('--color1', type=str, default='#a50b69#b73b87#db9dc3', help='color1')
parser.add_argument('--color2', type=str, default='#4076e0#40a7e0#40d7e0', help='color2')
parser.add_argument('--color3', type=str, default='#ff8b06#ffb431#ffcd9d', help='color3')
parser.add_argument('--disable_smooth', action='store_true',
help="disable gaussian kernel smoothing")
parser.add_argument('--transparency', action='store_true',
help="make background transparent in resulting frames")
parser.add_argument('--max_length', type=int, default=120,
help='maximum input video length')
parser.add_argument('-g', '--gpu_ids', type=int, default=0, required=False)
args = parser.parse_args()
config.initialize(args)
if args.name == 'full':
handle3x(config, args)
else:
handle2x(config, args)
if __name__ == '__main__':
main()