forked from danielkrause/DCASE2022-data-generator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
196 lines (163 loc) · 6.86 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import numpy as np
import scipy
def sample_from_quartiles(K, stats):
minn = stats[0]
maxx = stats[4]
quart1 = stats[1]
mediann = stats[2]
quart3 = stats[3]
samples = minn + (quart1 - minn)*np.random.rand(K, 1)
samples = np.append(samples,quart1)
samples = np.append(samples, quart1 + (mediann-quart1)*np.random.rand(K,1))
samples = np.append(samples,mediann)
samples = np.append(samples, mediann + (quart3-mediann)*np.random.rand(K,1))
samples = np.append(samples, quart3)
samples = np.append(samples, quart3 + (maxx-quart3)*np.random.rand(K,1))
return samples
def cart2sph(xyz):
return_list = False
if len(np.shape(xyz)) == 2:
return_list = True
x = xyz[:, 0]
y = xyz[:, 1]
z = xyz[:, 2]
else:
x = xyz[0]
y = xyz[1]
z = xyz[2]
azimuth = np.arctan2(y, x) * 180. / np.pi
elevation = np.arctan2(z, np.sqrt(x**2 + y**2)) * 180. / np.pi
if return_list:
return np.stack((azimuth,elevation),axis=0)
else:
return np.array([azimuth, elevation])
def stft_ham(insig, winsize=256, fftsize=512, hopsize=128):
nb_dim = len(np.shape(insig))
lSig = int(np.shape(insig)[0])
nCHin = int(np.shape(insig)[1]) if nb_dim > 1 else 1
x = np.arange(0,winsize)
nBins = int(fftsize/2 + 1)
nWindows = int(np.ceil(lSig/(2.*hopsize)))
nFrames = int(2*nWindows+1)
winvec = np.zeros((len(x),nCHin))
for i in range(nCHin):
winvec[:,i] = np.sin(x*(np.pi/winsize))**2
frontpad = winsize-hopsize
backpad = nFrames*hopsize-lSig
if nb_dim > 1:
insig_pad = np.pad(insig,((frontpad,backpad),(0,0)),'constant')
spectrum = np.zeros((nBins, nFrames, nCHin),dtype='complex')
else:
insig_pad = np.pad(insig,((frontpad,backpad)),'constant')
spectrum = np.zeros((nBins, nFrames),dtype='complex')
idx=0
nf=0
if nb_dim > 1:
while nf <= nFrames-1:
insig_win = np.multiply(winvec, insig_pad[idx+np.arange(0,winsize),:])
inspec = scipy.fft.fft(insig_win,n=fftsize,norm='backward',axis=0)
#inspec = scipy.fft.fft(insig_win,n=fftsize,axis=0)
inspec=inspec[:nBins,:]
spectrum[:,nf,:] = inspec
idx += hopsize
nf += 1
else:
while nf <= nFrames-1:
insig_win = np.multiply(winvec[:,0], insig_pad[idx+np.arange(0,winsize)])
inspec = scipy.fft.fft(insig_win,n=fftsize,norm='backward',axis=0)
#inspec = scipy.fft.fft(insig_win,n=fftsize,axis=0)
inspec=inspec[:nBins]
spectrum[:,nf] = inspec
idx += hopsize
nf += 1
return spectrum
def ctf_ltv_direct(sig, irs, ir_times, fs, win_size):
convsig = []
win_size = int(win_size)
hop_size = int(win_size / 2)
fft_size = win_size*2
nBins = int(fft_size/2)+1
# IRs
ir_shape = np.shape(irs)
sig_shape = np.shape(sig)
lIr = ir_shape[0]
if len(ir_shape) == 2:
nIrs = ir_shape[1]
nCHir = 1
elif len(ir_shape) == 3:
nIrs = ir_shape[2]
nCHir = ir_shape[1]
if nIrs != len(ir_times):
return ValueError('Bad ir times')
# number of STFT frames for the IRs (half-window hopsize)
nIrWindows = int(np.ceil(lIr/win_size))
nIrFrames = 2*nIrWindows+1
# number of STFT frames for the signal (half-window hopsize)
lSig = sig_shape[0]
nSigWindows = np.ceil(lSig/win_size)
nSigFrames = 2*nSigWindows+1
# quantize the timestamps of each IR to multiples of STFT frames (hopsizes)
tStamps = np.round((ir_times*fs+hop_size)/hop_size)
# create the two linear interpolator tracks, for the pairs of IRs between timestamps
nIntFrames = int(tStamps[-1])
Gint = np.zeros((nIntFrames, nIrs))
for ni in range(nIrs-1):
tpts = np.arange(tStamps[ni],tStamps[ni+1]+1,dtype=int)-1
ntpts = len(tpts)
ntpts_ratio = np.arange(0,ntpts)/(ntpts-1)
Gint[tpts,ni] = 1-ntpts_ratio
Gint[tpts,ni+1] = ntpts_ratio
# compute spectra of irs
if nCHir == 1:
irspec = np.zeros((nBins, nIrFrames, nIrs),dtype=complex)
else:
temp_spec = stft_ham(irs[:, :, 0], winsize=win_size, fftsize=2*win_size,hopsize=win_size//2)
irspec = np.zeros((nBins, np.shape(temp_spec)[1], nCHir, nIrs),dtype=complex)
for ni in range(nIrs):
if nCHir == 1:
irspec[:, :, ni] = stft_ham(irs[:, ni], winsize=win_size, fftsize=2*win_size,hopsize=win_size//2)
else:
spec = stft_ham(irs[:, :, ni], winsize=win_size, fftsize=2*win_size,hopsize=win_size//2)
irspec[:, :, :, ni] = spec#np.transpose(spec, (0, 2, 1))
#compute input signal spectra
sigspec = stft_ham(sig, winsize=win_size,fftsize=2*win_size,hopsize=win_size//2)
#initialize interpolated time-variant ctf
Gbuf = np.zeros((nIrFrames, nIrs))
if nCHir == 1:
ctf_ltv = np.zeros((nBins, nIrFrames),dtype=complex)
else:
ctf_ltv = np.zeros((nBins,nIrFrames,nCHir),dtype=complex)
S = np.zeros((nBins, nIrFrames),dtype=complex)
#processing loop
idx = 0
nf = 0
inspec_pad = sigspec
nFrames = int(np.min([np.shape(inspec_pad)[1], nIntFrames]))
convsig = np.zeros((win_size//2 + nFrames*win_size//2 + fft_size-win_size, nCHir))
while nf <= nFrames-1:
#compute interpolated ctf
Gbuf[1:, :] = Gbuf[:-1, :]
Gbuf[0, :] = Gint[nf, :]
if nCHir == 1:
for nif in range(nIrFrames):
ctf_ltv[:, nif] = np.matmul(irspec[:,nif,:], Gbuf[nif,:].astype(complex))
else:
for nch in range(nCHir):
for nif in range(nIrFrames):
ctf_ltv[:,nif,nch] = np.matmul(irspec[:,nif,nch,:],Gbuf[nif,:].astype(complex))
inspec_nf = inspec_pad[:, nf]
S[:,1:nIrFrames] = S[:, :nIrFrames-1]
S[:, 0] = inspec_nf
repS = np.tile(np.expand_dims(S,axis=2), [1, 1, nCHir])
convspec_nf = np.squeeze(np.sum(repS * ctf_ltv,axis=1))
first_dim = np.shape(convspec_nf)[0]
convspec_nf = np.vstack((convspec_nf, np.conj(convspec_nf[np.arange(first_dim-1, 1, -1)-1,:])))
convsig_nf = np.real(scipy.fft.ifft(convspec_nf, fft_size, norm='forward', axis=0)) ## get rid of the imaginary numerical error remain
# convsig_nf = np.real(scipy.fft.ifft(convspec_nf, fft_size, axis=0))
#overlap-add synthesis
convsig[idx+np.arange(0,fft_size),:] += convsig_nf
#advance sample pointer
idx += hop_size
nf += 1
convsig = convsig[(win_size):(nFrames*win_size)//2,:]
return convsig