-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
177 lines (145 loc) · 6.54 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import argparse
import math
import time
import numpy as np
import torch
from torch import nn
from torch import optim
import Corpus as c
from model import make_transformer, make_mos_transformer
parser = argparse.ArgumentParser(description='Transformer-MOS')
parser.add_argument('--data', type=str, default='./data/wikitext-103', help='location of corpus')
parser.add_argument('--mos', default=True, action='store_true', help='use mixture of softmax decoder')
parser.add_argument('--mixtures', type=int, default=10, help='num mixtures of softmax')
parser.add_argument('--dmodel', type=int, default=300, help='dimension of model')
parser.add_argument('--layers', type=int, default=4, help='number of transformer encoder layers')
parser.add_argument('--ffhidden', type=int, default=300, help='number of feed forward hidden units')
parser.add_argument('--dropout', type=float, default=.35, help='dropout rate')
parser.add_argument('--nhead', type=int, default=4, help='number of attention heads')
parser.add_argument('--seed', type=int, default=26, help='seed')
parser.add_argument('--cuda', default=True, action='store_true', help='cuda')
parser.add_argument('--batch_size', type=int, default=128, help='training batch size')
parser.add_argument('--bptt', type=int, default=35, help='sequence length')
parser.add_argument('--lr', type=float, default=7, help='learning rate')
parser.add_argument('--epochs', type=int, default=50, help='num epochs')
parser.add_argument('--decoder-strategy', type=str, default='greedy')
parser.add_argument('--log-interval', type=int, default=200, metavar='N',
help='report interval')
parser.add_argument('--clip', type=float, default=0.25,
help='gradient clipping')
EVAL_BATCH_SIZE = 10
MODEL_SAVE_DIR = './model'
model = None
ntokens = 0
criterion = nn.NLLLoss()
opt = None
device = None
def batchify(data, bsz):
nbatch = data.size(0) // bsz
data = data.narrow(0, 0, nbatch * bsz)
data = data.view(bsz, -1).t().contiguous()
return data
def get_batch(source, i):
seq_len = min(args.bptt, len(source) - 1 - i)
data = source[i:i + seq_len]
target = source[i + 1:i + 1 + seq_len].view(-1)
return data.to(device), target.to(device)
def train_epoch(train_data, epoch, args, lr):
model.train()
total_loss = 0.
start_time = time.time()
src_mask = model.generate_mask(args.bptt).to(device)
for batch, i in enumerate(range(0, train_data.size(0) - 1, args.bptt)):
data, targets = get_batch(train_data, i)
if data.size(0) != args.bptt:
src_mask = model.generate_mask(data.size(0)).to(device)
opt.zero_grad()
output = model(data, src_mask)
output = output.view(-1, ntokens)
loss = criterion(output, targets)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
opt.step()
total_loss += loss.item()
if batch % args.log_interval == 0 and batch > 0:
cur_loss = total_loss / args.log_interval
elapsed = time.time() - start_time
print('| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.2f} | ms/batch {:5.2f} | '
'loss {:5.2f} | ppl {:8.2f}'.format(
epoch, batch, len(train_data) // args.bptt, lr,
elapsed * 1000 / args.log_interval, cur_loss, math.exp(cur_loss)))
total_loss = 0
start_time = time.time()
def train(train_data, val_data, args):
best_val_loss = float("inf")
lr = args.lr
epoch = 1
while epoch <= args.epochs + 1 or lr >= 1e-3:
train_epoch(train_data, epoch, args, lr)
val_loss = evaluate(val_data, args)
print('=' * 89)
print('| End of epoch {} | val loss {:5.2f} | val ppl {:8.2f}'.format(epoch, val_loss, math.exp(val_loss)))
print('=' * 89)
if val_loss < best_val_loss:
best_val_loss = val_loss
PATH = "encoder-weights-mos.pth" if args.mos else "encoder-weights.pth"
torch.save(model.encoder.state_dict(), PATH)
else:
lr = lr / 1.75
for g in opt.param_groups:
g['lr'] = lr
epoch += 1
def evaluate(data_source, args):
model.eval()
total_loss = 0.0
src_mask = model.generate_mask(args.bptt).to(device)
with torch.no_grad():
for i in range(0, data_source.size(0) - 1, args.bptt):
data, targets = get_batch(data_source, i)
if data.size(0) != args.bptt:
src_mask = model.generate_mask(data.size(0)).to(device)
output = model(data, src_mask)
output = output.view(-1, ntokens)
total_loss += len(data) * criterion(output, targets).item()
return total_loss / (len(data_source) - 1)
if __name__ == '__main__':
args = parser.parse_args()
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.cuda and torch.cuda.is_available() is False:
raise Exception("CUDA is not available for use try running without --cuda")
device = torch.device("cuda" if args.cuda else "cpu")
print("USING {}".format(device))
print("Training on {}".format(args.data))
corpus = c.Corpus(args.data, device)
ntokens = len(corpus.dictionary)
train_data = batchify(corpus.train, args.batch_size)
val_data = batchify(corpus.valid, EVAL_BATCH_SIZE)
test_data = batchify(corpus.test, EVAL_BATCH_SIZE)
make = make_mos_transformer if args.mos else make_transformer
if args.mos:
model = make_mos_transformer(n_experts=args.mixtures, n_tokens=ntokens, dim_model=args.dmodel,
n_heads=args.nhead, n_layers=args.layers,
n_ff_hid=args.ffhidden, dropout=args.dropout)
print("Using MOS")
else:
model = make_transformer(n_tokens=ntokens, dim_model=args.dmodel, n_heads=args.nhead, n_layers=args.layers,
n_ff_hid=args.ffhidden, dropout=args.dropout)
print("Using non-mos")
total_params = sum(x.data.nelement() for x in model.parameters())
print("total number of params: {}".format(total_params))
model.to(device)
LR = args.lr
opt = optim.SGD(model.parameters(), lr=LR)
try:
print('-' * 100)
print("Starting training...")
train(train_data, val_data, args)
except KeyboardInterrupt:
print('-' * 100)
print('Exiting from training...')
test_loss = evaluate(test_data, args)
print('=' * 100)
print('|test loss {:5.2f} | test ppl {:8.2f}'.format(
test_loss, math.exp(test_loss)))
print('=' * 100)