forked from HaozheLiu-ST/Point-Beyond-Class
-
Notifications
You must be signed in to change notification settings - Fork 0
/
engine.py
306 lines (251 loc) · 14.8 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
# ------------------------------------------------------------------------
# UP-DETR
# Copyright (c) Tencent, Inc. and its affiliates. All Rights Reserved.
# ------------------------------------------------------------------------
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# ------------------------------------------------------------------------
"""
Train and eval functions used in main.py
"""
import math
import os
import sys
from typing import Iterable
import copy
from numpy import save
import datasets.transforms as T
import torch
import torchvision.transforms.functional as F
import util.misc as utils
from datasets.coco_eval import CocoEvaluator
from datasets.panoptic_eval import PanopticEvaluator
import collections
class globalV():
def __init__(self):
self.global_v = collections.defaultdict(int)
def set_value(self, key, value):
self.global_v[key] = value
def get_value(self, key):
return self.global_v[key]
global_value = globalV()
def splitList_by_idx(List, idx):
idx = set(idx)
return [v for i, v in enumerate(List) if i in idx]
t_randomErasing = T.RandomErasing(times=20, p=1, scale=(0.005, 0.02), value=0)
def train_one_epoch(args, model: torch.nn.Module, criterion: torch.nn.Module,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, max_norm: float = 0):
model.train()
criterion.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
# metric_logger.add_meter('class_error', utils.SmoothedValue(window_size=1, fmt='{value:.2f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 10
for samples, points_supervision, targets, filenames, is_unlabels in metric_logger.log_every(data_loader, print_freq, header):
# print(points_supervision[0]['labels'])
samples = samples.to(device)
points_supervision = [{k: v.to(device) for k, v in t.items()} for t in points_supervision]
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
samples_tensors = samples.tensors
if args.train_with_unlabel_imgs and sum(is_unlabels) >= 1:
# print('====> batch: ', len(targets), 'unlabel nums: ', sum(is_unlabels))
if len(targets)==sum(is_unlabels): continue
record_idx = []
flip_imgs = []
flip_points = []
for idx, (filename, sample, point_sup, is_unlabel) in enumerate(zip(filenames, samples_tensors, points_supervision, is_unlabels)):
if is_unlabel:
record_idx.append(idx)
flip_img = torch.flip(sample, dims=[-1])
if args.dataset_file == 'rsna':
flip_img = t_randomErasing(flip_img)
flip_imgs.append(flip_img.unsqueeze(0))
point_sup_ = copy.deepcopy(point_sup)
point_sup_['points'][:, 0] = 1 - point_sup_['points'][:, 0]
eps = 0.05
relative = torch.Tensor(point_sup_['points'].size(0), 2).uniform_(eps, eps).to(point_sup_['points'].device)
point_sup_['points'] += relative
flip_points.append(point_sup_)
assert len(flip_imgs) == len(flip_points), 'the number of imgs and anns must be the same.'
flip_imgs = torch.cat(flip_imgs, dim=0)
samples = torch.cat([samples_tensors, flip_imgs], dim=0)
points_supervision += flip_points
outputs = model(samples, points_supervision)
# print('=======original outpus \n', outputs)
if args.train_with_unlabel_imgs and sum(is_unlabels) >= 1:
outputs_for_ori = {'pred_boxes': [], 'aux_outputs': []}
outputs_for_unlabel = {'pred_boxes': [], 'aux_outputs': []}
pred_boxes, aux_outputs = outputs['pred_boxes'], outputs['aux_outputs']
N_extra = len(flip_imgs)
ori_batch_num = len(targets)
cur_batch_num = len(points_supervision)
pred_boxes_ori, pred_boxes_unlabel_flip = pred_boxes[:cur_batch_num - N_extra], pred_boxes[cur_batch_num - N_extra:]
label_idx = list(set(record_idx) ^ set(range(ori_batch_num)))
targets = splitList_by_idx(targets, label_idx)
pred_boxes_ori, pred_boxes_unlabel = splitList_by_idx(pred_boxes_ori, label_idx), splitList_by_idx(pred_boxes_ori, record_idx)
assert len(pred_boxes_unlabel) == len(pred_boxes_unlabel_flip), 'the number of imgs and flip imgs must be the same.'
outputs_for_ori['pred_boxes'] += pred_boxes_ori
outputs_for_unlabel['pred_boxes'].append(torch.cat(pred_boxes_unlabel + pred_boxes_unlabel_flip, dim=0))
for aux_output in aux_outputs:
aux_output = aux_output['pred_boxes']
aux_output_ori, aux_output_unlabel_flip = aux_output[:cur_batch_num - N_extra], aux_output[cur_batch_num - N_extra:]
aux_output_ori, aux_output_unlabel = splitList_by_idx(aux_output_ori, label_idx), splitList_by_idx(aux_output_ori, record_idx)
outputs_for_ori['aux_outputs'].append({'pred_boxes': aux_output_ori})
outputs_for_unlabel['aux_outputs'].append({'pred_boxes': [torch.cat(aux_output_unlabel + aux_output_unlabel_flip, dim=0)]})
outputs = outputs_for_ori
unlabel_outputs = outputs_for_unlabel
loss_dict = criterion(outputs, targets)
if args.train_with_unlabel_imgs and sum(is_unlabels) >= 1:
loss_dict_unlabel = criterion(unlabel_outputs, targets=None, specifiec_loss='cal_unlabel_consistency')
loss_dict.update(loss_dict_unlabel)
weight_dict = criterion.weight_dict
losses = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
# reduce losses over all GPUs for logging purposes
loss_dict_reduced = utils.reduce_dict(loss_dict)
loss_dict_reduced_unscaled = {f'{k}_unscaled': v
for k, v in loss_dict_reduced.items()}
# loss_dict_reduced_scaled = {k: v * weight_dict[k]
# for k, v in loss_dict_reduced.items() if k in weight_dict}
loss_dict_reduced_scaled = {k: v * weight_dict[k]
for k, v in loss_dict_reduced.items() if
k in weight_dict and len(k.split('_')) == 2}
losses_reduced_scaled = sum(loss_dict_reduced_scaled.values())
loss_value = losses_reduced_scaled.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
print(loss_dict_reduced)
sys.exit(1)
optimizer.zero_grad()
losses.backward()
if max_norm > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
optimizer.step()
# metric_logger.update(loss=loss_value, **loss_dict_reduced_scaled, **loss_dict_reduced_unscaled)
metric_logger.update(loss=loss_value, **loss_dict_reduced_scaled)
# metric_logger.update(mIoU=loss_dict_reduced['mIoU'])
# metric_logger.update(class_error=loss_dict_reduced['class_error'])
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluate(args, model, criterion, postprocessors, data_loader, base_ds, device, output_dir):
model.eval()
criterion.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
# metric_logger.add_meter('class_error', utils.SmoothedValue(window_size=1, fmt='{value:.2f}'))
header = 'Test:'
iou_types = tuple(k for k in ('segm', 'bbox') if k in postprocessors.keys())
coco_evaluator = CocoEvaluator(base_ds, iou_types)
# coco_evaluator.coco_eval[iou_types[0]].params.iouThrs = [0, 0.1, 0.5, 0.75]
panoptic_evaluator = None
if 'panoptic' in postprocessors.keys():
panoptic_evaluator = PanopticEvaluator(
data_loader.dataset.ann_file,
data_loader.dataset.ann_folder,
output_dir=os.path.join(output_dir, "panoptic_eval"),
)
if args.save_csv:
import csv
csv_write = csv.writer(open(args.save_csv, 'w'))
for samples, points_supervision, targets, filename, _ in metric_logger.log_every(data_loader, 10, header):
samples = samples.to(device)
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
points_supervision = [{k: v.to(device) for k, v in t.items()} for t in points_supervision]
# with torch.no_grad():
# print(points_supervision, targets, filename)
outputs = model(samples, points_supervision)
loss_dict = criterion(outputs, targets, 'test')
weight_dict = criterion.weight_dict
# reduce losses over all GPUs for logging purposes
loss_dict_reduced = utils.reduce_dict(loss_dict)
# loss_dict_reduced_scaled = {k: v * weight_dict[k]
# for k, v in loss_dict_reduced.items() if k in weight_dict}
loss_dict_reduced_scaled = {k: v * weight_dict[k]
for k, v in loss_dict_reduced.items() if
k in weight_dict and len(k.split('_')) == 2}
# loss_dict_reduced_unscaled = {f'{k}_unscaled': v
# for k, v in loss_dict_reduced.items()}
# metric_logger.update(loss=sum(loss_dict_reduced_scaled.values()),
# **loss_dict_reduced_scaled,
# **loss_dict_reduced_unscaled)
metric_logger.update(loss=sum(loss_dict_reduced_scaled.values()),
**loss_dict_reduced_scaled)
# metric_logger.update(class_error=loss_dict_reduced['class_error'])
orig_target_sizes = torch.stack([t["orig_size"] for t in targets], dim=0)
results = postprocessors['bbox'](outputs, orig_target_sizes)
if 'segm' in postprocessors.keys():
target_sizes = torch.stack([t["size"] for t in targets], dim=0)
results = postprocessors['segm'](results, outputs, orig_target_sizes, target_sizes)
res = {target['image_id'].item(): output for target, output in zip(targets, results)}
if args.save_evaltxt_forDraw: # for draw imgs
'''
==================================================
{1: {'boxes': (tensor([[599.1519, 465.2538, 844.6331, 838.9862],
[165.7746, 445.2140, 408.1470, 832.2156]], device='cuda:0'),)}}
==================================================
{2: {'boxes': (tensor([[224.3862, 465.6223, 481.9965, 832.2103],
[617.2076, 491.6592, 871.8964, 857.8474]], device='cuda:0'),)}}
==================================================
{4: {'boxes': (tensor([[629.7487, 255.3514, 896.3071, 670.9658]], device='cuda:0'),)}}
'''
root_ = '/apdcephfs/private_kimji/PointDETR_save'
img_id = targets[0]['image_id'].item()
points = points_supervision[0]['points'].cpu().numpy()
with open(os.path.join(root_, str(img_id) + '.txt'), 'w') as fw:
# print(res[img_id]['boxes'][0].cpu().numpy())
pts = res[img_id]['labels'][0][0].cpu().numpy()
pts = list(map(str, str(pts)[1:-1].split()))
for idx, (box_, label_) in enumerate(zip(res[img_id]['boxes'][0].cpu().numpy(), pts)):
fw.write(str(box_)[1:-1] + ' ' + str(points[idx])[1:-1] + ' ' + label_ +'\n')
if args.save_csv: # save pseudo labels to .cvc
idx2class = {1: 'Aortic_enlargement', 2: 'Atelectasis', 3: 'Calcification', 4: 'Cardiomegaly', 5: 'Consolidation', 6: 'ILD', 7: 'Infiltration', 8: 'Lung_Opacity', 9: 'Nodule_Mass', 10: 'Other_lesion', 11: 'Pleural_effusion', 12: 'Pleural_thickening', 13: 'Pneumothorax', 14: 'Pulmonary_fibrosis'}
if args.dataset_file == 'rsna': idx2class = {1: 'pneumonia', }
if args.dataset_file == 'cxr8': idx2class = {1: 'Aortic_enlargement', 2: 'Cardiomegaly', 3: 'Pulmonary_fibrosis', 4: 'Pleural_thickening', 5: 'Pleural_effusion', 6: 'Lung_Opacity', 7: 'Nodule_Mass', 8: 'Others'}
img_id = targets[0]['image_id'].item()
points = points_supervision[0]['points'].cpu().numpy()
pts = res[img_id]['labels'][0][0].cpu().numpy()
pts = list(map(str, str(pts)[1:-1].split()))
for box_, label_ in zip(res[img_id]['boxes'][0].cpu().numpy(), pts):
writeLine = [str(filename)[2:-3], -1, -1, -1, -1, idx2class[int(eval(label_))]] # filename: ('005852.jpg',)
box = list(map(str, str(box_)[1:-1].split()))
writeLine[1:-1] = box
csv_write.writerow(writeLine)
if coco_evaluator is not None:
coco_evaluator.update(res)
if panoptic_evaluator is not None:
res_pano = postprocessors["panoptic"](outputs, target_sizes, orig_target_sizes)
for i, target in enumerate(targets):
image_id = target["image_id"].item()
file_name = f"{image_id:012d}.png"
res_pano[i]["image_id"] = image_id
res_pano[i]["file_name"] = file_name
panoptic_evaluator.update(res_pano)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
if coco_evaluator is not None:
coco_evaluator.synchronize_between_processes()
if panoptic_evaluator is not None:
panoptic_evaluator.synchronize_between_processes()
# accumulate predictions from all images
if coco_evaluator is not None:
coco_evaluator.accumulate()
coco_evaluator.summarize()
panoptic_res = None
if panoptic_evaluator is not None:
panoptic_res = panoptic_evaluator.summarize()
stats = {k: meter.global_avg for k, meter in metric_logger.meters.items()}
if coco_evaluator is not None:
if 'bbox' in postprocessors.keys():
stats['coco_eval_bbox'] = coco_evaluator.coco_eval['bbox'].stats.tolist()
if 'segm' in postprocessors.keys():
stats['coco_eval_masks'] = coco_evaluator.coco_eval['segm'].stats.tolist()
if panoptic_res is not None:
stats['PQ_all'] = panoptic_res["All"]
stats['PQ_th'] = panoptic_res["Things"]
stats['PQ_st'] = panoptic_res["Stuff"]
return stats, coco_evaluator