-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
183 lines (154 loc) · 8.14 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import os
import random
import argparse
from tqdm import tqdm
import torch
import torch.nn.functional as F
import torch.nn as nn
import torch.backends.cudnn as cudnn
import clip
import numpy as np
#from utils import *
from classifiers.clip_fewshot_model import CLIP_ZeroShot
from classifiers.resnet import resnet50
from third_party.certify import certify
from third_party.predict import predict
from diffusion_robust_model import DiffusionRobustModel
from IF_robust_model import IFRobustModel
from TeCoA.utils import load_val_datasets, get_text_prompts_val, convert_models_to_fp32
from utils import return_prompt
def get_arguments():
parser = argparse.ArgumentParser('Certifying CLIP ZeroShot')
parser.add_argument('--seed', type=int, default=0)
# certifying parameters
parser.add_argument('--start', type=int, default=0)
parser.add_argument('--skip', type=int, default=-1, help='you dont need to revise this param')
parser.add_argument('--nrows', type=int, default=500)
parser.add_argument('--max', type=int, default=-1)
parser.add_argument('--N0', type=int, default=100) #smooth sample size for predict
parser.add_argument('--N', type=int, default=10000) # smooth sample size for cerity
parser.add_argument('--alpha', type=float, default=0.001)
parser.add_argument('--sigma', type=float, default=0.25, help='noise level for certifying') # check
parser.add_argument('--empirical', action='store_true') # for caculation empirical
parser.add_argument('--validation_mode', type=bool, default=False)
#empirical
parser.add_argument('--num_noise_vec', type=int, default=32)
parser.add_argument('--norm_type', type=str, default='l_2', choices=['l_2', 'l_inf'])
parser.add_argument('--test_eps', type=float, default=1.0) # check empirical=True면!
parser.add_argument('--test_numsteps', type=int, default=100)
parser.add_argument('--random_noise_attack', type=bool, default=False) # default is false following smoothadv
parser.add_argument('--attack_type', type=str, default='pgd', choices=['pgd', 'auto', 'clean'])
# dataset
parser.add_argument('--root', type=str, default='./datasets/DATA',
help='dataset')
parser.add_argument('--imagenet_root', type=str, default='/data/datasets/ImageNet', help='imagenet root directory')
parser.add_argument('--testdata', type=str, choices=['STL10', 'SUN397','StanfordCars', 'Food101',
'oxfordpet', 'Caltech256', 'flowers102',
'dtd','ImageNet','isic', 'EuroSAT', 'cropdisease'], help='test datasetname for certifying')
parser.add_argument('--use_clip_official', type=bool, default=True, help='whether use clip official imagenet classname')
# model
parser.add_argument('--method', type=str, choices=['RS', 'DiffusionRobustModel', 'IFRobustModel']) # RS: CLIP-Smooth in out paper
parser.add_argument('--diffusion_ckpt', type=str, default='') # for DiffusionRobustModel
parser.add_argument('--classifier_method', type=str, choices=['clip', 'resnet'])
parser.add_argument('--classifier_ckpt', type=str, default='')
# save
parser.add_argument('--outfile', type=str, default='', help='path for saving result log file')
args = parser.parse_args()
return args
def main(args):
num_gpus = torch.cuda.device_count()
args.num_workers = 0 # 0으로 해야 error 발생 x
# fix seed
if args.seed != None:
print("fix seed")
seed = args.seed
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed)
cudnn.deterministic = True
cudnn.benchmark = True
print("Preparing test dataset.")
template = 'This is a photo of a {}'
test_dataset_name = args.testdata # dataset 하나씩만
test_dataset = load_val_datasets(args, [test_dataset_name])[0]
text_list = get_text_prompts_val([test_dataset], [test_dataset_name], template=template, use_clip_official=args.use_clip_official)
import math
if args.validation_mode:
args.start = 1
args.nrows = 200
args.skip = math.floor(len(test_dataset)/args.nrows)
print(f'skip factor is {args.skip}')
num_classes = len(text_list[0])
print(text_list[0])
print(f'num classes : {num_classes}')
print(f'sigma: {args.sigma}')
# Certify
if args.method=='DiffusionRobustModel':
assert (args.testdata == 'ImageNet') and (args.diffusion_ckpt != None) # [Carlini et al, 2024] only ImageNet is supported and use diffusion checkpoint in their github
base_classifier = DiffusionRobustModel(diffusion_ckpt=args.diffusion_ckpt,
classifier_method=args.classifier_method, classifier_ckpt=args.classifier_ckpt, text_list=text_list,
sigma=args.sigma, num_classes=num_classes)
base_classifier = base_classifier.cuda().eval()
# Get the timestep t corresponding to noise level sigma
t = base_classifier.estimate_timestep()
args.c_batch = 100 * num_gpus
if args.empirical:
args.test_stepsize = (args.test_eps/args.test_numsteps)*(4/3)
predict(base_classifier, num_classes, test_dataset, args, t)
else:
certify(base_classifier, num_classes, test_dataset, args, t)
elif args.method=='IFRobustModel':
base_classifier = IFRobustModel(lora_ckpt=args.diffusion_ckpt, prompt=args.prompt,
classifier_method=args.classifier_method, classifier_ckpt=args.classifier_ckpt,
text_list=text_list, sigma=args.sigma, num_classes=num_classes)
args.c_batch = 60 * num_gpus
t = base_classifier.estimate_timestep()
print(f'sigma {args.sigma}-estimated timestep is {t}')
if args.empirical:
args.test_stepsize = (args.test_eps/args.test_numsteps)*(4/3)
predict(base_classifier, num_classes, test_dataset, args, t)
else:
certify(base_classifier, num_classes, test_dataset, args, t)
elif args.method == 'RS':
if args.classifier_method == 'zeroshot':
print("use CLIP")
if args.classifier_ckpt:
print("use classifier checkpoint!")
clip_model, _ = clip.load('ViT-B/32', jit=False) # clip github 참조
convert_models_to_fp32(clip_model) # must!!
classifier_ckpt = torch.load(args.classifier_ckpt)
clip_model.load_state_dict(classifier_ckpt['model_state_dict'])
else:
print("not use classifier checkpoint!")
clip_model, _ = clip.load('ViT-B/32', jit=False) # clip github 참조
convert_models_to_fp32(clip_model) # must!!
base_classifier = CLIP_ZeroShot(clip_model, text_list=text_list)
base_classifier.cuda()
elif args.classifier_method == 'resnet':
print("use ResNet")
if args.classifier_ckpt:
base_classifier = resnet50(pretrained=False, use_ddp=True)
print("use classifier checkpoint!")
classifier_ckpt = torch.load(args.classifier_ckpt)
base_classifier.load_state_dict(classifier_ckpt['state_dict'])
base_classifier = nn.Sequential(base_classifier[0], base_classifier[1].module)
else:
base_classifier = resnet50()
print("not use classifier checkpoint!")
else:
raise NotImplementedError("check --classifier args!")
args.c_batch = 256 * num_gpus
if args.empirical:
args.test_stepsize = (args.test_eps/args.test_numsteps)*(4/3)
predict(base_classifier, num_classes, test_dataset, args)
else:
certify(base_classifier, num_classes, test_dataset, args)
else:
raise NotImplementedError("check --method args!")
if __name__ == '__main__':
n = torch.cuda.device_count()
print(n)
args = get_arguments()
args.prompt = return_prompt(args.testdata, personalized=True)
print(args)
main(args)