-
Notifications
You must be signed in to change notification settings - Fork 19
/
model.py
443 lines (346 loc) · 19.4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import optim
import copy
import numpy as np
import math
from eval import segment_bars_with_confidence
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def exponential_descrease(idx_decoder, p=3):
return math.exp(-p*idx_decoder)
class AttentionHelper(nn.Module):
def __init__(self):
super(AttentionHelper, self).__init__()
self.softmax = nn.Softmax(dim=-1)
def scalar_dot_att(self, proj_query, proj_key, proj_val, padding_mask):
'''
scalar dot attention.
:param proj_query: shape of (B, C, L) => (Batch_Size, Feature_Dimension, Length)
:param proj_key: shape of (B, C, L)
:param proj_val: shape of (B, C, L)
:param padding_mask: shape of (B, C, L)
:return: attention value of shape (B, C, L)
'''
m, c1, l1 = proj_query.shape
m, c2, l2 = proj_key.shape
assert c1 == c2
energy = torch.bmm(proj_query.permute(0, 2, 1), proj_key) # out of shape (B, L1, L2)
attention = energy / np.sqrt(c1)
attention = attention + torch.log(padding_mask + 1e-6) # mask the zero paddings. log(1e-6) for zero paddings
attention = self.softmax(attention)
attention = attention * padding_mask
attention = attention.permute(0,2,1)
out = torch.bmm(proj_val, attention)
return out, attention
class AttLayer(nn.Module):
def __init__(self, q_dim, k_dim, v_dim, r1, r2, r3, bl, stage, att_type): # r1 = r2
super(AttLayer, self).__init__()
self.query_conv = nn.Conv1d(in_channels=q_dim, out_channels=q_dim // r1, kernel_size=1)
self.key_conv = nn.Conv1d(in_channels=k_dim, out_channels=k_dim // r2, kernel_size=1)
self.value_conv = nn.Conv1d(in_channels=v_dim, out_channels=v_dim // r3, kernel_size=1)
self.conv_out = nn.Conv1d(in_channels=v_dim // r3, out_channels=v_dim, kernel_size=1)
self.bl = bl
self.stage = stage
self.att_type = att_type
assert self.att_type in ['normal_att', 'block_att', 'sliding_att']
assert self.stage in ['encoder','decoder']
self.att_helper = AttentionHelper()
self.window_mask = self.construct_window_mask()
def construct_window_mask(self):
'''
construct window mask of shape (1, l, l + l//2 + l//2), used for sliding window self attention
'''
window_mask = torch.zeros((1, self.bl, self.bl + 2* (self.bl //2)))
for i in range(self.bl):
window_mask[:, :, i:i+self.bl] = 1
return window_mask.to(device)
def forward(self, x1, x2, mask):
# x1 from the encoder
# x2 from the decoder
query = self.query_conv(x1)
key = self.key_conv(x1)
if self.stage == 'decoder':
assert x2 is not None
value = self.value_conv(x2)
else:
value = self.value_conv(x1)
if self.att_type == 'normal_att':
return self._normal_self_att(query, key, value, mask)
elif self.att_type == 'block_att':
return self._block_wise_self_att(query, key, value, mask)
elif self.att_type == 'sliding_att':
return self._sliding_window_self_att(query, key, value, mask)
def _normal_self_att(self,q,k,v, mask):
m_batchsize, c1, L = q.size()
_,c2,L = k.size()
_,c3,L = v.size()
padding_mask = torch.ones((m_batchsize, 1, L)).to(device) * mask[:,0:1,:]
output, attentions = self.att_helper.scalar_dot_att(q, k, v, padding_mask)
output = self.conv_out(F.relu(output))
output = output[:, :, 0:L]
return output * mask[:, 0:1, :]
def _block_wise_self_att(self, q,k,v, mask):
m_batchsize, c1, L = q.size()
_,c2,L = k.size()
_,c3,L = v.size()
nb = L // self.bl
if L % self.bl != 0:
q = torch.cat([q, torch.zeros((m_batchsize, c1, self.bl - L % self.bl)).to(device)], dim=-1)
k = torch.cat([k, torch.zeros((m_batchsize, c2, self.bl - L % self.bl)).to(device)], dim=-1)
v = torch.cat([v, torch.zeros((m_batchsize, c3, self.bl - L % self.bl)).to(device)], dim=-1)
nb += 1
padding_mask = torch.cat([torch.ones((m_batchsize, 1, L)).to(device) * mask[:,0:1,:], torch.zeros((m_batchsize, 1, self.bl * nb - L)).to(device)],dim=-1)
q = q.reshape(m_batchsize, c1, nb, self.bl).permute(0, 2, 1, 3).reshape(m_batchsize * nb, c1, self.bl)
padding_mask = padding_mask.reshape(m_batchsize, 1, nb, self.bl).permute(0, 2, 1, 3).reshape(m_batchsize * nb,1, self.bl)
k = k.reshape(m_batchsize, c2, nb, self.bl).permute(0, 2, 1, 3).reshape(m_batchsize * nb, c2, self.bl)
v = v.reshape(m_batchsize, c3, nb, self.bl).permute(0, 2, 1, 3).reshape(m_batchsize * nb, c3, self.bl)
output, attentions = self.att_helper.scalar_dot_att(q, k, v, padding_mask)
output = self.conv_out(F.relu(output))
output = output.reshape(m_batchsize, nb, c3, self.bl).permute(0, 2, 1, 3).reshape(m_batchsize, c3, nb * self.bl)
output = output[:, :, 0:L]
return output * mask[:, 0:1, :]
def _sliding_window_self_att(self, q,k,v, mask):
m_batchsize, c1, L = q.size()
_, c2, _ = k.size()
_, c3, _ = v.size()
assert m_batchsize == 1 # currently, we only accept input with batch size 1
# padding zeros for the last segment
nb = L // self.bl
if L % self.bl != 0:
q = torch.cat([q, torch.zeros((m_batchsize, c1, self.bl - L % self.bl)).to(device)], dim=-1)
k = torch.cat([k, torch.zeros((m_batchsize, c2, self.bl - L % self.bl)).to(device)], dim=-1)
v = torch.cat([v, torch.zeros((m_batchsize, c3, self.bl - L % self.bl)).to(device)], dim=-1)
nb += 1
padding_mask = torch.cat([torch.ones((m_batchsize, 1, L)).to(device) * mask[:,0:1,:], torch.zeros((m_batchsize, 1, self.bl * nb - L)).to(device)],dim=-1)
# sliding window approach, by splitting query_proj and key_proj into shape (c1, l) x (c1, 2l)
# sliding window for query_proj: reshape
q = q.reshape(m_batchsize, c1, nb, self.bl).permute(0, 2, 1, 3).reshape(m_batchsize * nb, c1, self.bl)
# sliding window approach for key_proj
# 1. add paddings at the start and end
k = torch.cat([torch.zeros(m_batchsize, c2, self.bl // 2).to(device), k, torch.zeros(m_batchsize, c2, self.bl // 2).to(device)], dim=-1)
v = torch.cat([torch.zeros(m_batchsize, c3, self.bl // 2).to(device), v, torch.zeros(m_batchsize, c3, self.bl // 2).to(device)], dim=-1)
padding_mask = torch.cat([torch.zeros(m_batchsize, 1, self.bl // 2).to(device), padding_mask, torch.zeros(m_batchsize, 1, self.bl // 2).to(device)], dim=-1)
# 2. reshape key_proj of shape (m_batchsize*nb, c1, 2*self.bl)
k = torch.cat([k[:,:, i*self.bl:(i+1)*self.bl+(self.bl//2)*2] for i in range(nb)], dim=0) # special case when self.bl = 1
v = torch.cat([v[:,:, i*self.bl:(i+1)*self.bl+(self.bl//2)*2] for i in range(nb)], dim=0)
# 3. construct window mask of shape (1, l, 2l), and use it to generate final mask
padding_mask = torch.cat([padding_mask[:,:, i*self.bl:(i+1)*self.bl+(self.bl//2)*2] for i in range(nb)], dim=0) # of shape (m*nb, 1, 2l)
final_mask = self.window_mask.repeat(m_batchsize * nb, 1, 1) * padding_mask
output, attention = self.att_helper.scalar_dot_att(q, k, v, final_mask)
output = self.conv_out(F.relu(output))
output = output.reshape(m_batchsize, nb, -1, self.bl).permute(0, 2, 1, 3).reshape(m_batchsize, -1, nb * self.bl)
output = output[:, :, 0:L]
return output * mask[:, 0:1, :]
class MultiHeadAttLayer(nn.Module):
def __init__(self, q_dim, k_dim, v_dim, r1, r2, r3, bl, stage, att_type, num_head):
super(MultiHeadAttLayer, self).__init__()
# assert v_dim % num_head == 0
self.conv_out = nn.Conv1d(v_dim * num_head, v_dim, 1)
self.layers = nn.ModuleList(
[copy.deepcopy(AttLayer(q_dim, k_dim, v_dim, r1, r2, r3, bl, stage, att_type)) for i in range(num_head)])
self.dropout = nn.Dropout(p=0.5)
def forward(self, x1, x2, mask):
out = torch.cat([layer(x1, x2, mask) for layer in self.layers], dim=1)
out = self.conv_out(self.dropout(out))
return out
class ConvFeedForward(nn.Module):
def __init__(self, dilation, in_channels, out_channels):
super(ConvFeedForward, self).__init__()
self.layer = nn.Sequential(
nn.Conv1d(in_channels, out_channels, 3, padding=dilation, dilation=dilation),
nn.ReLU()
)
def forward(self, x):
return self.layer(x)
class FCFeedForward(nn.Module):
def __init__(self, in_channels, out_channels):
super(FCFeedForward, self).__init__()
self.layer = nn.Sequential(
nn.Conv1d(in_channels, out_channels, 1), # conv1d equals fc
nn.ReLU(),
nn.Dropout(),
nn.Conv1d(out_channels, out_channels, 1)
)
def forward(self, x):
return self.layer(x)
class AttModule(nn.Module):
def __init__(self, dilation, in_channels, out_channels, r1, r2, att_type, stage, alpha):
super(AttModule, self).__init__()
self.feed_forward = ConvFeedForward(dilation, in_channels, out_channels)
self.instance_norm = nn.InstanceNorm1d(in_channels, track_running_stats=False)
self.att_layer = AttLayer(in_channels, in_channels, out_channels, r1, r1, r2, dilation, att_type=att_type, stage=stage) # dilation
self.conv_1x1 = nn.Conv1d(out_channels, out_channels, 1)
self.dropout = nn.Dropout()
self.alpha = alpha
def forward(self, x, f, mask):
out = self.feed_forward(x)
out = self.alpha * self.att_layer(self.instance_norm(out), f, mask) + out
out = self.conv_1x1(out)
out = self.dropout(out)
return (x + out) * mask[:, 0:1, :]
class PositionalEncoding(nn.Module):
"Implement the PE function."
def __init__(self, d_model, max_len=10000):
super(PositionalEncoding, self).__init__()
# Compute the positional encodings once in log space.
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) *
-(math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).permute(0,2,1) # of shape (1, d_model, l)
self.pe = nn.Parameter(pe, requires_grad=True)
# self.register_buffer('pe', pe)
def forward(self, x):
return x + self.pe[:, :, 0:x.shape[2]]
class Encoder(nn.Module):
def __init__(self, num_layers, r1, r2, num_f_maps, input_dim, num_classes, channel_masking_rate, att_type, alpha):
super(Encoder, self).__init__()
self.conv_1x1 = nn.Conv1d(input_dim, num_f_maps, 1) # fc layer
self.layers = nn.ModuleList(
[AttModule(2 ** i, num_f_maps, num_f_maps, r1, r2, att_type, 'encoder', alpha) for i in # 2**i
range(num_layers)])
self.conv_out = nn.Conv1d(num_f_maps, num_classes, 1)
self.dropout = nn.Dropout2d(p=channel_masking_rate)
self.channel_masking_rate = channel_masking_rate
def forward(self, x, mask):
'''
:param x: (N, C, L)
:param mask:
:return:
'''
if self.channel_masking_rate > 0:
x = x.unsqueeze(2)
x = self.dropout(x)
x = x.squeeze(2)
feature = self.conv_1x1(x)
for layer in self.layers:
feature = layer(feature, None, mask)
out = self.conv_out(feature) * mask[:, 0:1, :]
return out, feature
class Decoder(nn.Module):
def __init__(self, num_layers, r1, r2, num_f_maps, input_dim, num_classes, att_type, alpha):
super(Decoder, self).__init__()# self.position_en = PositionalEncoding(d_model=num_f_maps)
self.conv_1x1 = nn.Conv1d(input_dim, num_f_maps, 1)
self.layers = nn.ModuleList(
[AttModule(2 ** i, num_f_maps, num_f_maps, r1, r2, att_type, 'decoder', alpha) for i in # 2 ** i
range(num_layers)])
self.conv_out = nn.Conv1d(num_f_maps, num_classes, 1)
def forward(self, x, fencoder, mask):
feature = self.conv_1x1(x)
for layer in self.layers:
feature = layer(feature, fencoder, mask)
out = self.conv_out(feature) * mask[:, 0:1, :]
return out, feature
class MyTransformer(nn.Module):
def __init__(self, num_decoders, num_layers, r1, r2, num_f_maps, input_dim, num_classes, channel_masking_rate):
super(MyTransformer, self).__init__()
self.encoder = Encoder(num_layers, r1, r2, num_f_maps, input_dim, num_classes, channel_masking_rate, att_type='sliding_att', alpha=1)
self.decoders = nn.ModuleList([copy.deepcopy(Decoder(num_layers, r1, r2, num_f_maps, num_classes, num_classes, att_type='sliding_att', alpha=exponential_descrease(s))) for s in range(num_decoders)]) # num_decoders
def forward(self, x, mask):
out, feature = self.encoder(x, mask)
outputs = out.unsqueeze(0)
for decoder in self.decoders:
out, feature = decoder(F.softmax(out, dim=1) * mask[:, 0:1, :], feature* mask[:, 0:1, :], mask)
outputs = torch.cat((outputs, out.unsqueeze(0)), dim=0)
return outputs
class Trainer:
def __init__(self, num_layers, r1, r2, num_f_maps, input_dim, num_classes, channel_masking_rate):
self.model = MyTransformer(3, num_layers, r1, r2, num_f_maps, input_dim, num_classes, channel_masking_rate)
self.ce = nn.CrossEntropyLoss(ignore_index=-100)
print('Model Size: ', sum(p.numel() for p in self.model.parameters()))
self.mse = nn.MSELoss(reduction='none')
self.num_classes = num_classes
def train(self, save_dir, batch_gen, num_epochs, batch_size, learning_rate, batch_gen_tst=None):
self.model.train()
self.model.to(device)
optimizer = optim.Adam(self.model.parameters(), lr=learning_rate, weight_decay=1e-5)
print('LR:{}'.format(learning_rate))
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=3, verbose=True)
for epoch in range(num_epochs):
epoch_loss = 0
correct = 0
total = 0
while batch_gen.has_next():
batch_input, batch_target, mask, vids = batch_gen.next_batch(batch_size, False)
batch_input, batch_target, mask = batch_input.to(device), batch_target.to(device), mask.to(device)
optimizer.zero_grad()
ps = self.model(batch_input, mask)
loss = 0
for p in ps:
loss += self.ce(p.transpose(2, 1).contiguous().view(-1, self.num_classes), batch_target.view(-1))
loss += 0.15 * torch.mean(torch.clamp(
self.mse(F.log_softmax(p[:, :, 1:], dim=1), F.log_softmax(p.detach()[:, :, :-1], dim=1)), min=0,
max=16) * mask[:, :, 1:])
epoch_loss += loss.item()
loss.backward()
optimizer.step()
_, predicted = torch.max(ps.data[-1], 1)
correct += ((predicted == batch_target).float() * mask[:, 0, :].squeeze(1)).sum().item()
total += torch.sum(mask[:, 0, :]).item()
scheduler.step(epoch_loss)
batch_gen.reset()
print("[epoch %d]: epoch loss = %f, acc = %f" % (epoch + 1, epoch_loss / len(batch_gen.list_of_examples),
float(correct) / total))
if (epoch + 1) % 10 == 0 and batch_gen_tst is not None:
self.test(batch_gen_tst, epoch)
torch.save(self.model.state_dict(), save_dir + "/epoch-" + str(epoch + 1) + ".model")
torch.save(optimizer.state_dict(), save_dir + "/epoch-" + str(epoch + 1) + ".opt")
def test(self, batch_gen_tst, epoch):
self.model.eval()
correct = 0
total = 0
if_warp = False # When testing, always false
with torch.no_grad():
while batch_gen_tst.has_next():
batch_input, batch_target, mask, vids = batch_gen_tst.next_batch(1, if_warp)
batch_input, batch_target, mask = batch_input.to(device), batch_target.to(device), mask.to(device)
p = self.model(batch_input, mask)
_, predicted = torch.max(p.data[-1], 1)
correct += ((predicted == batch_target).float() * mask[:, 0, :].squeeze(1)).sum().item()
total += torch.sum(mask[:, 0, :]).item()
acc = float(correct) / total
print("---[epoch %d]---: tst acc = %f" % (epoch + 1, acc))
self.model.train()
batch_gen_tst.reset()
def predict(self, model_dir, results_dir, features_path, batch_gen_tst, epoch, actions_dict, sample_rate):
self.model.eval()
with torch.no_grad():
self.model.to(device)
self.model.load_state_dict(torch.load(model_dir + "/epoch-" + str(epoch) + ".model"))
batch_gen_tst.reset()
import time
time_start = time.time()
while batch_gen_tst.has_next():
batch_input, batch_target, mask, vids = batch_gen_tst.next_batch(1)
vid = vids[0]
# print(vid)
features = np.load(features_path + vid.split('.')[0] + '.npy')
features = features[:, ::sample_rate]
input_x = torch.tensor(features, dtype=torch.float)
input_x.unsqueeze_(0)
input_x = input_x.to(device)
predictions = self.model(input_x, torch.ones(input_x.size(), device=device))
for i in range(len(predictions)):
confidence, predicted = torch.max(F.softmax(predictions[i], dim=1).data, 1)
confidence, predicted = confidence.squeeze(), predicted.squeeze()
batch_target = batch_target.squeeze()
confidence, predicted = confidence.squeeze(), predicted.squeeze()
segment_bars_with_confidence(results_dir + '/{}_stage{}.png'.format(vid, i),
confidence.tolist(),
batch_target.tolist(), predicted.tolist())
recognition = []
for i in range(len(predicted)):
recognition = np.concatenate((recognition, [list(actions_dict.keys())[
list(actions_dict.values()).index(
predicted[i].item())]] * sample_rate))
f_name = vid.split('/')[-1].split('.')[0]
f_ptr = open(results_dir + "/" + f_name, "w")
f_ptr.write("### Frame level recognition: ###\n")
f_ptr.write(' '.join(recognition))
f_ptr.close()
time_end = time.time()
if __name__ == '__main__':
pass