-
Notifications
You must be signed in to change notification settings - Fork 19
/
main.py
98 lines (71 loc) · 2.83 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import torch
from model import *
from batch_gen import BatchGenerator
from eval import func_eval
import os
import argparse
import numpy as np
import random
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
seed = 19980125 # my birthday, :)
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
parser = argparse.ArgumentParser()
parser.add_argument('--action', default='train')
parser.add_argument('--dataset', default="50salads")
parser.add_argument('--split', default='1')
parser.add_argument('--model_dir', default='models')
parser.add_argument('--result_dir', default='results')
args = parser.parse_args()
num_epochs = 120
lr = 0.0005
num_layers = 10
num_f_maps = 64
features_dim = 2048
bz = 1
channel_mask_rate = 0.3
# use the full temporal resolution @ 15fps
sample_rate = 1
# sample input features @ 15fps instead of 30 fps
# for 50salads, and up-sample the output to 30 fps
if args.dataset == "50salads":
sample_rate = 2
# To prevent over-fitting for GTEA. Early stopping & large dropout rate
if args.dataset == "gtea":
channel_mask_rate = 0.5
if args.dataset == 'breakfast':
lr = 0.0001
vid_list_file = "./data/"+args.dataset+"/splits/train.split"+args.split+".bundle"
vid_list_file_tst = "./data/"+args.dataset+"/splits/test.split"+args.split+".bundle"
features_path = "./data/"+args.dataset+"/features/"
gt_path = "./data/"+args.dataset+"/groundTruth/"
mapping_file = "./data/"+args.dataset+"/mapping.txt"
model_dir = "./{}/".format(args.model_dir)+args.dataset+"/split_"+args.split
results_dir = "./{}/".format(args.result_dir)+args.dataset+"/split_"+args.split
if not os.path.exists(model_dir):
os.makedirs(model_dir)
if not os.path.exists(results_dir):
os.makedirs(results_dir)
file_ptr = open(mapping_file, 'r')
actions = file_ptr.read().split('\n')[:-1]
file_ptr.close()
actions_dict = dict()
for a in actions:
actions_dict[a.split()[1]] = int(a.split()[0])
index2label = dict()
for k,v in actions_dict.items():
index2label[v] = k
num_classes = len(actions_dict)
trainer = Trainer(num_layers, 2, 2, num_f_maps, features_dim, num_classes, channel_mask_rate)
if args.action == "train":
batch_gen = BatchGenerator(num_classes, actions_dict, gt_path, features_path, sample_rate)
batch_gen.read_data(vid_list_file)
batch_gen_tst = BatchGenerator(num_classes, actions_dict, gt_path, features_path, sample_rate)
batch_gen_tst.read_data(vid_list_file_tst)
trainer.train(model_dir, batch_gen, num_epochs, bz, lr, batch_gen_tst)
if args.action == "predict":
batch_gen_tst = BatchGenerator(num_classes, actions_dict, gt_path, features_path, sample_rate)
batch_gen_tst.read_data(vid_list_file_tst)
trainer.predict(model_dir, results_dir, features_path, batch_gen_tst, num_epochs, actions_dict, sample_rate)